-
Previous Article
Consensus of discrete-time linear multi-agent systems with observer-type protocols
- DCDS-B Home
- This Issue
-
Next Article
Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme
Converting a general 3-D autonomous quadratic system to an extended Lorenz-type system
1. | School of Mathematics, Yunnan Normal University, Kunming 650092, China |
2. | Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China |
3. | College of Mathematics and Information Science, Guangxi University, Nanning 530004, China |
4. | School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China |
References:
[1] |
J. Atmos. Sci., 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. |
[2] |
Phys. Lett. A., 57 (1976), 397-398.
doi: 10.1016/0375-9601(76)90101-8. |
[3] |
IEEE Trans. Circ. Syst., 33 (1986), 1072-1096.
doi: 10.1109/TCS.1986.1085869. |
[4] |
Science Press, Beijing, 2003. Google Scholar |
[5] |
Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567.
doi: 10.3934/dcdsb.2008.10.537. |
[6] |
Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 621-650.
doi: 10.3934/dcdsb.2008.10.621. |
[7] |
Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871-905.
doi: 10.3934/dcdsb.2010.14.871. |
[8] |
Int. J. Bifurcation and Chaos, 6 (1996), 1341-1349.
doi: 10.1142/S021812749600076X. |
[9] |
Int. J. Bifurcation and Chaos, 8 (1998), 1585-1590.
doi: 10.1142/S0218127498001236. |
[10] |
in "Chaos and Bifurcation Control: Theorey and Applications, Part I: Chaos Control" (eds. G. Chen, X. Yu and D. Hill), Springer-Verlag, Heidelberg, (1971). Google Scholar |
[11] |
Int. J. Bifurcation and Chaos, 9 (1999), 1465-1466. |
[12] |
Int. J. Bifurcation and Chaos, 3 (2002), 659-661. |
[13] |
Int. J. Bifurcation and Chaos, 12 (2002), 2917-2926.
doi: 10.1142/S021812740200631X. |
[14] |
Int. J. Bifurcation and Chaos, 13 (2003), 261-267.
doi: 10.1142/S0218127403006509. |
[15] |
Int. J. Bifurcation and Chaos, 14 (2004), 1395-1403.
doi: 10.1142/S0218127404009880. |
[16] |
Prentice-Hall, London, 1996. Google Scholar |
[17] |
In "Proceedings of the 15th Triennial World Congress of IFAC" (CD Rom), Barcelona, Spain, 2002. Google Scholar |
[18] |
Int. J. Bifurcation and Chaos, 12 (2002), 1789-1812.
doi: 10.1142/S0218127402005467. |
[19] |
Chaos, Solitons and Fractal, 26 (2005), 1271-1276.
doi: 10.1016/j.chaos.2005.02.040. |
[20] |
Physica D, 62 (1993), 338-346.
doi: 10.1016/0167-2789(93)90292-9. |
[21] |
Int. J. Bifurcation and Chaos, 14 (2006), 2855-2871.
doi: 10.1142/S0218127406016501. |
[22] |
Phys. Rev. E., 50 (1994), R647-R650.
doi: 10.1103/PhysRevE.50.R647. |
[23] |
IEEE Trans. Circ. Syst.-I, 40 (1993), 675-682. Google Scholar |
show all references
References:
[1] |
J. Atmos. Sci., 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. |
[2] |
Phys. Lett. A., 57 (1976), 397-398.
doi: 10.1016/0375-9601(76)90101-8. |
[3] |
IEEE Trans. Circ. Syst., 33 (1986), 1072-1096.
doi: 10.1109/TCS.1986.1085869. |
[4] |
Science Press, Beijing, 2003. Google Scholar |
[5] |
Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567.
doi: 10.3934/dcdsb.2008.10.537. |
[6] |
Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 621-650.
doi: 10.3934/dcdsb.2008.10.621. |
[7] |
Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871-905.
doi: 10.3934/dcdsb.2010.14.871. |
[8] |
Int. J. Bifurcation and Chaos, 6 (1996), 1341-1349.
doi: 10.1142/S021812749600076X. |
[9] |
Int. J. Bifurcation and Chaos, 8 (1998), 1585-1590.
doi: 10.1142/S0218127498001236. |
[10] |
in "Chaos and Bifurcation Control: Theorey and Applications, Part I: Chaos Control" (eds. G. Chen, X. Yu and D. Hill), Springer-Verlag, Heidelberg, (1971). Google Scholar |
[11] |
Int. J. Bifurcation and Chaos, 9 (1999), 1465-1466. |
[12] |
Int. J. Bifurcation and Chaos, 3 (2002), 659-661. |
[13] |
Int. J. Bifurcation and Chaos, 12 (2002), 2917-2926.
doi: 10.1142/S021812740200631X. |
[14] |
Int. J. Bifurcation and Chaos, 13 (2003), 261-267.
doi: 10.1142/S0218127403006509. |
[15] |
Int. J. Bifurcation and Chaos, 14 (2004), 1395-1403.
doi: 10.1142/S0218127404009880. |
[16] |
Prentice-Hall, London, 1996. Google Scholar |
[17] |
In "Proceedings of the 15th Triennial World Congress of IFAC" (CD Rom), Barcelona, Spain, 2002. Google Scholar |
[18] |
Int. J. Bifurcation and Chaos, 12 (2002), 1789-1812.
doi: 10.1142/S0218127402005467. |
[19] |
Chaos, Solitons and Fractal, 26 (2005), 1271-1276.
doi: 10.1016/j.chaos.2005.02.040. |
[20] |
Physica D, 62 (1993), 338-346.
doi: 10.1016/0167-2789(93)90292-9. |
[21] |
Int. J. Bifurcation and Chaos, 14 (2006), 2855-2871.
doi: 10.1142/S0218127406016501. |
[22] |
Phys. Rev. E., 50 (1994), R647-R650.
doi: 10.1103/PhysRevE.50.R647. |
[23] |
IEEE Trans. Circ. Syst.-I, 40 (1993), 675-682. Google Scholar |
[1] |
Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017 |
[2] |
Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019 |
[3] |
Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026 |
[4] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[5] |
Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3045-3062. doi: 10.3934/dcds.2020397 |
[6] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[7] |
Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021055 |
[8] |
Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037 |
[9] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[10] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021100 |
[11] |
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021074 |
[12] |
Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198 |
[13] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[14] |
Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021071 |
[15] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[16] |
Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238 |
[17] |
Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018 |
[18] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[19] |
Zhisong Chen, Shong-Iee Ivan Su. Assembly system with omnichannel coordination. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021047 |
[20] |
Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021026 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]