• Previous Article
    Consensus of discrete-time linear multi-agent systems with observer-type protocols
  • DCDS-B Home
  • This Issue
  • Next Article
    Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme
September  2011, 16(2): 475-488. doi: 10.3934/dcdsb.2011.16.475

Converting a general 3-D autonomous quadratic system to an extended Lorenz-type system

1. 

School of Mathematics, Yunnan Normal University, Kunming 650092, China

2. 

Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China

3. 

College of Mathematics and Information Science, Guangxi University, Nanning 530004, China

4. 

School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

Received  November 2009 Revised  December 2010 Published  June 2011

A problem of reducing a general three-dimensional (3-D) autonomous quadratic system to a Lorenz-type system is studied. Firstly, under some necessary conditions for preserving the basic qualitative properties of the Lorenz system, the general 3-D autonomous quadratic system is converted to an extended Lorenz-type system (ELTS) which contains a large class of existing chaotic dynamical systems. Secondly, some different canonical forms of the ELTS are obtained with the aid of various nonsingular linear transformations and normalization techniques. Thirdly, the conjugate systems of the ELTS are defined and discussed. Finally, a sufficient condition for the nonexistence of chaos in such ELTS is derived.
Citation: Cuncai Hua, Guanrong Chen, Qunhong Li, Juhong Ge. Converting a general 3-D autonomous quadratic system to an extended Lorenz-type system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 475-488. doi: 10.3934/dcdsb.2011.16.475
References:
[1]

J. Atmos. Sci., 20 (1963), 130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.  Google Scholar

[2]

Phys. Lett. A., 57 (1976), 397-398. doi: 10.1016/0375-9601(76)90101-8.  Google Scholar

[3]

IEEE Trans. Circ. Syst., 33 (1986), 1072-1096. doi: 10.1109/TCS.1986.1085869.  Google Scholar

[4]

Science Press, Beijing, 2003. Google Scholar

[5]

Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567. doi: 10.3934/dcdsb.2008.10.537.  Google Scholar

[6]

Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 621-650. doi: 10.3934/dcdsb.2008.10.621.  Google Scholar

[7]

Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871-905. doi: 10.3934/dcdsb.2010.14.871.  Google Scholar

[8]

Int. J. Bifurcation and Chaos, 6 (1996), 1341-1349. doi: 10.1142/S021812749600076X.  Google Scholar

[9]

Int. J. Bifurcation and Chaos, 8 (1998), 1585-1590. doi: 10.1142/S0218127498001236.  Google Scholar

[10]

in "Chaos and Bifurcation Control: Theorey and Applications, Part I: Chaos Control" (eds. G. Chen, X. Yu and D. Hill), Springer-Verlag, Heidelberg, (1971). Google Scholar

[11]

Int. J. Bifurcation and Chaos, 9 (1999), 1465-1466.  Google Scholar

[12]

Int. J. Bifurcation and Chaos, 3 (2002), 659-661.  Google Scholar

[13]

Int. J. Bifurcation and Chaos, 12 (2002), 2917-2926. doi: 10.1142/S021812740200631X.  Google Scholar

[14]

Int. J. Bifurcation and Chaos, 13 (2003), 261-267. doi: 10.1142/S0218127403006509.  Google Scholar

[15]

Int. J. Bifurcation and Chaos, 14 (2004), 1395-1403. doi: 10.1142/S0218127404009880.  Google Scholar

[16]

Prentice-Hall, London, 1996. Google Scholar

[17]

In "Proceedings of the 15th Triennial World Congress of IFAC" (CD Rom), Barcelona, Spain, 2002. Google Scholar

[18]

Int. J. Bifurcation and Chaos, 12 (2002), 1789-1812. doi: 10.1142/S0218127402005467.  Google Scholar

[19]

Chaos, Solitons and Fractal, 26 (2005), 1271-1276. doi: 10.1016/j.chaos.2005.02.040.  Google Scholar

[20]

Physica D, 62 (1993), 338-346. doi: 10.1016/0167-2789(93)90292-9.  Google Scholar

[21]

Int. J. Bifurcation and Chaos, 14 (2006), 2855-2871. doi: 10.1142/S0218127406016501.  Google Scholar

[22]

Phys. Rev. E., 50 (1994), R647-R650. doi: 10.1103/PhysRevE.50.R647.  Google Scholar

[23]

IEEE Trans. Circ. Syst.-I, 40 (1993), 675-682. Google Scholar

show all references

References:
[1]

J. Atmos. Sci., 20 (1963), 130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.  Google Scholar

[2]

Phys. Lett. A., 57 (1976), 397-398. doi: 10.1016/0375-9601(76)90101-8.  Google Scholar

[3]

IEEE Trans. Circ. Syst., 33 (1986), 1072-1096. doi: 10.1109/TCS.1986.1085869.  Google Scholar

[4]

Science Press, Beijing, 2003. Google Scholar

[5]

Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567. doi: 10.3934/dcdsb.2008.10.537.  Google Scholar

[6]

Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 621-650. doi: 10.3934/dcdsb.2008.10.621.  Google Scholar

[7]

Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871-905. doi: 10.3934/dcdsb.2010.14.871.  Google Scholar

[8]

Int. J. Bifurcation and Chaos, 6 (1996), 1341-1349. doi: 10.1142/S021812749600076X.  Google Scholar

[9]

Int. J. Bifurcation and Chaos, 8 (1998), 1585-1590. doi: 10.1142/S0218127498001236.  Google Scholar

[10]

in "Chaos and Bifurcation Control: Theorey and Applications, Part I: Chaos Control" (eds. G. Chen, X. Yu and D. Hill), Springer-Verlag, Heidelberg, (1971). Google Scholar

[11]

Int. J. Bifurcation and Chaos, 9 (1999), 1465-1466.  Google Scholar

[12]

Int. J. Bifurcation and Chaos, 3 (2002), 659-661.  Google Scholar

[13]

Int. J. Bifurcation and Chaos, 12 (2002), 2917-2926. doi: 10.1142/S021812740200631X.  Google Scholar

[14]

Int. J. Bifurcation and Chaos, 13 (2003), 261-267. doi: 10.1142/S0218127403006509.  Google Scholar

[15]

Int. J. Bifurcation and Chaos, 14 (2004), 1395-1403. doi: 10.1142/S0218127404009880.  Google Scholar

[16]

Prentice-Hall, London, 1996. Google Scholar

[17]

In "Proceedings of the 15th Triennial World Congress of IFAC" (CD Rom), Barcelona, Spain, 2002. Google Scholar

[18]

Int. J. Bifurcation and Chaos, 12 (2002), 1789-1812. doi: 10.1142/S0218127402005467.  Google Scholar

[19]

Chaos, Solitons and Fractal, 26 (2005), 1271-1276. doi: 10.1016/j.chaos.2005.02.040.  Google Scholar

[20]

Physica D, 62 (1993), 338-346. doi: 10.1016/0167-2789(93)90292-9.  Google Scholar

[21]

Int. J. Bifurcation and Chaos, 14 (2006), 2855-2871. doi: 10.1142/S0218127406016501.  Google Scholar

[22]

Phys. Rev. E., 50 (1994), R647-R650. doi: 10.1103/PhysRevE.50.R647.  Google Scholar

[23]

IEEE Trans. Circ. Syst.-I, 40 (1993), 675-682. Google Scholar

[1]

Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017

[2]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[3]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[4]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[5]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3045-3062. doi: 10.3934/dcds.2020397

[6]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[7]

Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021055

[8]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037

[9]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[10]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[11]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[12]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[13]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[14]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[15]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[16]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[17]

Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018

[18]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[19]

Zhisong Chen, Shong-Iee Ivan Su. Assembly system with omnichannel coordination. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021047

[20]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]