\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Consensus of discrete-time linear multi-agent systems with observer-type protocols

Abstract Related Papers Cited by
  • This paper concerns the consensus of discrete-time multi-agent systems with linear or linearized dynamics. An observer-type protocol based on the relative outputs of neighboring agents is proposed. The consensus of such a multi-agent system with a directed communication topology can be cast into the stability of a set of matrices with the same low dimension as that of a single agent. The notion of discrete-time consensus region is then introduced and analyzed. For neurally stable agents, it is shown that there exists an observer-type protocol having a bounded consensus region in the form of an open unit disk, provided that each agent is stabilizable and detectable. An algorithm is further presented to construct a protocol to achieve consensus with respect to all the communication topologies containing a spanning tree. Moreover, for the case where the agents have no poles outside the unit circle, an algorithm is proposed to construct a protocol having an origin-centered disk of radius
    $\delta$ ($0<\delta<1$) as its consensus region. Finally, the consensus algorithms are applied to solve formation control problems of multi-agent systems.
    Mathematics Subject Classification: Primary: 93A14, 93C55; Secondary: 93C05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Bauso, L. Giarré and R. Pesenti, Consensus for netowrks with unknown but bounded disturbances, SIAM J. Control Optim., 48 (2009), 1756-1770.doi: 10.1137/060678786.

    [2]

    S. Bowong and J. L. Dimi, Adaptive synchronization of a class of uncertain chaotic systems, Discret. Contin. Dyn. Syst., 9 (2008), 235-248.

    [3]

    J. Cortés, Distributed algorithms for reaching consensus on general functions, Automatica, 44 (2008), 726-737.doi: 10.1016/j.automatica.2007.07.022.

    [4]

    Z. S. Duan, G. R. Chen and L. Huang, Synchronization of weighted networks and complex synchronized regions, Phys. Lett. A, 372 (2008), 3741-3751.doi: 10.1016/j.physleta.2008.02.056.

    [5]

    Z. S. Duan, G. R. Chen and L. Huang, Disconnected synchronized regions of complex dynamical networks, IEEE Trans. Autom. Control, 54 (2009), 845-849.doi: 10.1109/TAC.2008.2009690.

    [6]

    J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle formations, IEEE Trans. Automat. Control, 49 (2004), 1465-1476.doi: 10.1109/TAC.2004.834433.

    [7]

    P. Frasca, R. Carli, F. Pagnani and S. Zampieri, Average consensus on networks with quantized communication, Int. J. Robust Nonlinear Control, 19 (2008), 1787-1816.doi: 10.1002/rnc.1396.

    [8]

    Y. Hong, J. Hu and L. Gao, Tracking control for multi-agent consensus with an active leader and variable topology, Automatica, 42 (2006), 1177-1182.doi: 10.1016/j.automatica.2006.02.013.

    [9]

    Y. Hong, G. R. Chen and L. Bushnell, Distributed observers design for leader-following control of multi-agent, Automatica, 44 (2008), 846-850.doi: 10.1016/j.automatica.2007.07.004.

    [10]

    R. Horn and C. Johnson, "Matrix Analysis," Cambridge Univ. Press, New York, 1985.

    [11]

    A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonous agents using neareast neighbor rules, IEEE Trans. Autom. Control, 48 (2003), 988-1001.doi: 10.1109/TAC.2003.812781.

    [12]

    T. Katayama, On the matrix Riccati equation for linear systems with a random gain, IEEE Trans. Autom. Control, 21 (1976), 770-771.doi: 10.1109/TAC.1976.1101325.

    [13]

    G. Lafferriere, A. Williams, J. Caughman and J. J. P. Veerman, Decentralized control of vehicle formations, Syst. Control Lett., 54 (2005), 899-910.doi: 10.1016/j.sysconle.2005.02.004.

    [14]

    Z. K. Li, Z. S. Duan and L. Huang, $H_\infty$ control of networked multi-agent systems, J. Syst. Sci. Complex., 22 (2009), 35-48.doi: 10.1007/s11424-009-9145-y.

    [15]

    Z. K. Li, Z. S. Duan, G. R. Chen and L. Huang, Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Trans. Circuits Syst. I-Regul. Pap., 51 (2010), 213-224.

    [16]

    P. Lin, Y. M. Jia and L. Li, Distributed robust $H_\infty$ consensus control in directed networks of agents with time-delay, Syst. Control Lett., 57 (2008), 643-653.doi: 10.1016/j.sysconle.2008.01.002.

    [17]

    P. Lin and Y. M. Jia, Further results on decentralised coordination in networks of agents with second-order dynamics, IET Contr. Theory Appl., 3 (2009), 957-970.doi: 10.1049/iet-cta.2008.0263.

    [18]

    C. Liu, Z. S. Duan, G. R. Chen and L. Huang, Analyzing and controlling the network synchronization regions, Physica A, 386 (2007), 531-542.doi: 10.1016/j.physa.2007.08.006.

    [19]

    C. Q. Ma and J. F. Zhang, Necessary and sufficient conditions for consensusability of linear multi-agent systems, IEEE Trans. Autom. Control, 55 (2010), 1263-1268.doi: 10.1109/TAC.2010.2042764.

    [20]

    K. Ogata, "Modern Control Engineering," 3rd edition, Prentice Hall: Englewood Cliffs, 1996.

    [21]

    R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49 (2004), 1520-1533.doi: 10.1109/TAC.2004.834113.

    [22]

    R. Olfati-Saber, Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Autom. Control, 51 (2006), 401-420.doi: 10.1109/TAC.2005.864190.

    [23]

    R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems, Pro. IEEE, 97 (2007), 215-233.doi: 10.1109/JPROC.2006.887293.

    [24]

    L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80 (1998), 2109-2112.doi: 10.1103/PhysRevLett.80.2109.

    [25]

    W. Ren and R. W. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topogies, IEEE Trans. Autom. Control, 50 (2005), 655-661.doi: 10.1109/TAC.2005.846556.

    [26]

    W. Ren, R. W. Beard and E. M. Atkins, Information consensus in multivehicle cooperative control, IEEE Control Syst. Mag., 27 (2007), 71-82.doi: 10.1109/MCS.2007.338264.

    [27]

    W. Ren, K. L. Moore and Y. Q. Chen, High-order and model reference consensus algorithms in cooperative control of multi-vehicle systems, J. Dyn. Syst. Meas. Control-Trans. ASME, 129 (2007), 678-688.

    [28]

    W. Ren, On consensus algorithms for double-integrator dynamics, IEEE Trans. Autom. Control, 53 (2008), 1503-1509.

    [29]

    W. Ren and N. Sorensen, Distributed coordination architecture for multi-robot formation control, Robot. Auton. Syst., 56 (2008), 324-333.doi: 10.1016/j.robot.2007.08.005.

    [30]

    A. Rahmani, M. Ji, M. Mesbahi and M. Egerstedt, Controllability of multi-agent systems from a graph-theorectic perspective, SIAM J. Control Optim., 48 (2009), 162-186.doi: 10.1137/060674909.

    [31]

    L. Scardavi and S. Sepulchre, Synchronization in networks of identical linear systems, Automatica, 45 (2009), 2557-2562.doi: 10.1016/j.automatica.2009.07.006.

    [32]

    L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, M. I. Jordan and S. S. Sastry, Foundations of control and estimation over lossy networks, Proc. IEEE, 95 (2007), 163-187.doi: 10.1109/JPROC.2006.887306.

    [33]

    J. H. Seo, H. Shim and J. Back, Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach, Automatica, 45 (2009), 2659-2664.doi: 10.1016/j.automatica.2009.07.022.

    [34]

    B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan and S. S. Sastry, Kalman filtering with intermittent observations, IEEE Trans. Autom. Control, 49 (2004), 1453-1464.doi: 10.1109/TAC.2004.834121.

    [35]

    Y. G. Sun and W. Long, Consensus problems in networks of agents with double-integrator dynamics and time-varying delays, Int. J. Control, 82 (2009), 1937-1945.doi: 10.1080/00207170902838269.

    [36]

    R. S. Smith and F. Y. Hadaegh, Control of deep-space formation-flying spacecraft; Relative sensing and switched information, J. Guid. Control Dyn., 28 (2005), 106-114.doi: 10.2514/1.6165.

    [37]

    H. S. Su, X. F. Wang and Z. L. Lin, Flocking of multi-agents with a virtual leader, IEEE Trans. Autom. Control, 54 (2009), 293-307.doi: 10.1109/TAC.2008.2010897.

    [38]

    H. G. Tanner, A. Jadbabaie and G. J. Pappas, Flocking in fixed and switching networks, IEEE Trans. Autom. Control, 52 (2007), 863-868.doi: 10.1109/TAC.2007.895948.

    [39]

    Y. P. Tian and C. L. Liu, Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations, Automatica, 45 (2009), 1347-1353.doi: 10.1016/j.automatica.2009.01.009.

    [40]

    S. E. Tuna, Synchronizing linear systems via partial-state coupling, Automatica, 44 (2008), 2179-2184.doi: 10.1016/j.automatica.2008.01.004.

    [41]

    S. E. Tuna, Conditions for synchronizability in arrays of coupled linear systems, IEEE Trans. Autom. Control, 54 (2009), 2416-2420.doi: 10.1109/TAC.2009.2029296.

    [42]

    T. Vicsek, A. Cziroók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transitions in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.doi: 10.1103/PhysRevLett.75.1226.

    [43]

    J. H. Wang, D. Z. Cheng and X. M. Hu, Consensus of multi-agent linear dynamic systems, Asian J. Control, 10 (2008), 144-155.doi: 10.1002/asjc.15.

    [44]

    G. Xie and L. Wang, Consensus control for a class of networks of dynamic agents, Int. J. Robust Nonlinear Control, 17 (2007), 941-959.doi: 10.1002/rnc.1144.

    [45]

    R. Yamapi and R. S. Mackay, Stability of synchronization in a shift-invariant ring of mutually coupled oscillators, Discret. Contin. Dyn. Syst., 10 (2008), 973-996.doi: 10.3934/dcdsb.2008.10.973.

    [46]

    H. T. Zhang, M. Z. Q. Chen, T. Zhou and G. B. Stan, Ultrafast consensus via predictive mechanisms, Europhysics Letters, 83 (2008), 40003.doi: 10.1209/0295-5075/83/40003.

    [47]

    K. M. Zhou and J. C. Doyle, "Essentials of Robust Control," Prentice-Hall, Englewood Cliffs, 1998.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(291) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return