September  2011, 16(2): 489-505. doi: 10.3934/dcdsb.2011.16.489

Consensus of discrete-time linear multi-agent systems with observer-type protocols

1. 

School of Automation, Beijing Institute of Technology, Beijing 100081, P. R., China

2. 

State Key Lab for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, P. R., China

3. 

Department of Electronic Engineering, City University of Hong Kong, Hong Kong

Received  December 2009 Revised  October 2010 Published  June 2011

This paper concerns the consensus of discrete-time multi-agent systems with linear or linearized dynamics. An observer-type protocol based on the relative outputs of neighboring agents is proposed. The consensus of such a multi-agent system with a directed communication topology can be cast into the stability of a set of matrices with the same low dimension as that of a single agent. The notion of discrete-time consensus region is then introduced and analyzed. For neurally stable agents, it is shown that there exists an observer-type protocol having a bounded consensus region in the form of an open unit disk, provided that each agent is stabilizable and detectable. An algorithm is further presented to construct a protocol to achieve consensus with respect to all the communication topologies containing a spanning tree. Moreover, for the case where the agents have no poles outside the unit circle, an algorithm is proposed to construct a protocol having an origin-centered disk of radius
$\delta$ ($0<\delta<1$) as its consensus region. Finally, the consensus algorithms are applied to solve formation control problems of multi-agent systems.
Citation: Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489
References:
[1]

SIAM J. Control Optim., 48 (2009), 1756-1770. doi: 10.1137/060678786.  Google Scholar

[2]

Discret. Contin. Dyn. Syst., 9 (2008), 235-248.  Google Scholar

[3]

Automatica, 44 (2008), 726-737. doi: 10.1016/j.automatica.2007.07.022.  Google Scholar

[4]

Phys. Lett. A, 372 (2008), 3741-3751. doi: 10.1016/j.physleta.2008.02.056.  Google Scholar

[5]

IEEE Trans. Autom. Control, 54 (2009), 845-849. doi: 10.1109/TAC.2008.2009690.  Google Scholar

[6]

IEEE Trans. Automat. Control, 49 (2004), 1465-1476. doi: 10.1109/TAC.2004.834433.  Google Scholar

[7]

Int. J. Robust Nonlinear Control, 19 (2008), 1787-1816. doi: 10.1002/rnc.1396.  Google Scholar

[8]

Automatica, 42 (2006), 1177-1182. doi: 10.1016/j.automatica.2006.02.013.  Google Scholar

[9]

Automatica, 44 (2008), 846-850. doi: 10.1016/j.automatica.2007.07.004.  Google Scholar

[10]

Cambridge Univ. Press, New York, 1985.  Google Scholar

[11]

IEEE Trans. Autom. Control, 48 (2003), 988-1001. doi: 10.1109/TAC.2003.812781.  Google Scholar

[12]

IEEE Trans. Autom. Control, 21 (1976), 770-771. doi: 10.1109/TAC.1976.1101325.  Google Scholar

[13]

Syst. Control Lett., 54 (2005), 899-910. doi: 10.1016/j.sysconle.2005.02.004.  Google Scholar

[14]

J. Syst. Sci. Complex., 22 (2009), 35-48. doi: 10.1007/s11424-009-9145-y.  Google Scholar

[15]

IEEE Trans. Circuits Syst. I-Regul. Pap., 51 (2010), 213-224.  Google Scholar

[16]

Syst. Control Lett., 57 (2008), 643-653. doi: 10.1016/j.sysconle.2008.01.002.  Google Scholar

[17]

IET Contr. Theory Appl., 3 (2009), 957-970. doi: 10.1049/iet-cta.2008.0263.  Google Scholar

[18]

Physica A, 386 (2007), 531-542. doi: 10.1016/j.physa.2007.08.006.  Google Scholar

[19]

IEEE Trans. Autom. Control, 55 (2010), 1263-1268. doi: 10.1109/TAC.2010.2042764.  Google Scholar

[20]

edition, Prentice Hall: Englewood Cliffs, 1996. Google Scholar

[21]

IEEE Trans. Autom. Control, 49 (2004), 1520-1533. doi: 10.1109/TAC.2004.834113.  Google Scholar

[22]

IEEE Trans. Autom. Control, 51 (2006), 401-420. doi: 10.1109/TAC.2005.864190.  Google Scholar

[23]

Pro. IEEE, 97 (2007), 215-233. doi: 10.1109/JPROC.2006.887293.  Google Scholar

[24]

Phys. Rev. Lett., 80 (1998), 2109-2112. doi: 10.1103/PhysRevLett.80.2109.  Google Scholar

[25]

IEEE Trans. Autom. Control, 50 (2005), 655-661. doi: 10.1109/TAC.2005.846556.  Google Scholar

[26]

IEEE Control Syst. Mag., 27 (2007), 71-82. doi: 10.1109/MCS.2007.338264.  Google Scholar

[27]

J. Dyn. Syst. Meas. Control-Trans. ASME, 129 (2007), 678-688. Google Scholar

[28]

IEEE Trans. Autom. Control, 53 (2008), 1503-1509.  Google Scholar

[29]

Robot. Auton. Syst., 56 (2008), 324-333. doi: 10.1016/j.robot.2007.08.005.  Google Scholar

[30]

SIAM J. Control Optim., 48 (2009), 162-186. doi: 10.1137/060674909.  Google Scholar

[31]

Automatica, 45 (2009), 2557-2562. doi: 10.1016/j.automatica.2009.07.006.  Google Scholar

[32]

IEEE, 95 (2007), 163-187. doi: 10.1109/JPROC.2006.887306.  Google Scholar

[33]

Automatica, 45 (2009), 2659-2664. doi: 10.1016/j.automatica.2009.07.022.  Google Scholar

[34]

IEEE Trans. Autom. Control, 49 (2004), 1453-1464. doi: 10.1109/TAC.2004.834121.  Google Scholar

[35]

Int. J. Control, 82 (2009), 1937-1945. doi: 10.1080/00207170902838269.  Google Scholar

[36]

J. Guid. Control Dyn., 28 (2005), 106-114. doi: 10.2514/1.6165.  Google Scholar

[37]

IEEE Trans. Autom. Control, 54 (2009), 293-307. doi: 10.1109/TAC.2008.2010897.  Google Scholar

[38]

IEEE Trans. Autom. Control, 52 (2007), 863-868. doi: 10.1109/TAC.2007.895948.  Google Scholar

[39]

Automatica, 45 (2009), 1347-1353. doi: 10.1016/j.automatica.2009.01.009.  Google Scholar

[40]

Automatica, 44 (2008), 2179-2184. doi: 10.1016/j.automatica.2008.01.004.  Google Scholar

[41]

IEEE Trans. Autom. Control, 54 (2009), 2416-2420. doi: 10.1109/TAC.2009.2029296.  Google Scholar

[42]

Phys. Rev. Lett., 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[43]

Asian J. Control, 10 (2008), 144-155. doi: 10.1002/asjc.15.  Google Scholar

[44]

Int. J. Robust Nonlinear Control, 17 (2007), 941-959. doi: 10.1002/rnc.1144.  Google Scholar

[45]

Discret. Contin. Dyn. Syst., 10 (2008), 973-996. doi: 10.3934/dcdsb.2008.10.973.  Google Scholar

[46]

Europhysics Letters, 83 (2008), 40003. doi: 10.1209/0295-5075/83/40003.  Google Scholar

[47]

Prentice-Hall, Englewood Cliffs, 1998. Google Scholar

show all references

References:
[1]

SIAM J. Control Optim., 48 (2009), 1756-1770. doi: 10.1137/060678786.  Google Scholar

[2]

Discret. Contin. Dyn. Syst., 9 (2008), 235-248.  Google Scholar

[3]

Automatica, 44 (2008), 726-737. doi: 10.1016/j.automatica.2007.07.022.  Google Scholar

[4]

Phys. Lett. A, 372 (2008), 3741-3751. doi: 10.1016/j.physleta.2008.02.056.  Google Scholar

[5]

IEEE Trans. Autom. Control, 54 (2009), 845-849. doi: 10.1109/TAC.2008.2009690.  Google Scholar

[6]

IEEE Trans. Automat. Control, 49 (2004), 1465-1476. doi: 10.1109/TAC.2004.834433.  Google Scholar

[7]

Int. J. Robust Nonlinear Control, 19 (2008), 1787-1816. doi: 10.1002/rnc.1396.  Google Scholar

[8]

Automatica, 42 (2006), 1177-1182. doi: 10.1016/j.automatica.2006.02.013.  Google Scholar

[9]

Automatica, 44 (2008), 846-850. doi: 10.1016/j.automatica.2007.07.004.  Google Scholar

[10]

Cambridge Univ. Press, New York, 1985.  Google Scholar

[11]

IEEE Trans. Autom. Control, 48 (2003), 988-1001. doi: 10.1109/TAC.2003.812781.  Google Scholar

[12]

IEEE Trans. Autom. Control, 21 (1976), 770-771. doi: 10.1109/TAC.1976.1101325.  Google Scholar

[13]

Syst. Control Lett., 54 (2005), 899-910. doi: 10.1016/j.sysconle.2005.02.004.  Google Scholar

[14]

J. Syst. Sci. Complex., 22 (2009), 35-48. doi: 10.1007/s11424-009-9145-y.  Google Scholar

[15]

IEEE Trans. Circuits Syst. I-Regul. Pap., 51 (2010), 213-224.  Google Scholar

[16]

Syst. Control Lett., 57 (2008), 643-653. doi: 10.1016/j.sysconle.2008.01.002.  Google Scholar

[17]

IET Contr. Theory Appl., 3 (2009), 957-970. doi: 10.1049/iet-cta.2008.0263.  Google Scholar

[18]

Physica A, 386 (2007), 531-542. doi: 10.1016/j.physa.2007.08.006.  Google Scholar

[19]

IEEE Trans. Autom. Control, 55 (2010), 1263-1268. doi: 10.1109/TAC.2010.2042764.  Google Scholar

[20]

edition, Prentice Hall: Englewood Cliffs, 1996. Google Scholar

[21]

IEEE Trans. Autom. Control, 49 (2004), 1520-1533. doi: 10.1109/TAC.2004.834113.  Google Scholar

[22]

IEEE Trans. Autom. Control, 51 (2006), 401-420. doi: 10.1109/TAC.2005.864190.  Google Scholar

[23]

Pro. IEEE, 97 (2007), 215-233. doi: 10.1109/JPROC.2006.887293.  Google Scholar

[24]

Phys. Rev. Lett., 80 (1998), 2109-2112. doi: 10.1103/PhysRevLett.80.2109.  Google Scholar

[25]

IEEE Trans. Autom. Control, 50 (2005), 655-661. doi: 10.1109/TAC.2005.846556.  Google Scholar

[26]

IEEE Control Syst. Mag., 27 (2007), 71-82. doi: 10.1109/MCS.2007.338264.  Google Scholar

[27]

J. Dyn. Syst. Meas. Control-Trans. ASME, 129 (2007), 678-688. Google Scholar

[28]

IEEE Trans. Autom. Control, 53 (2008), 1503-1509.  Google Scholar

[29]

Robot. Auton. Syst., 56 (2008), 324-333. doi: 10.1016/j.robot.2007.08.005.  Google Scholar

[30]

SIAM J. Control Optim., 48 (2009), 162-186. doi: 10.1137/060674909.  Google Scholar

[31]

Automatica, 45 (2009), 2557-2562. doi: 10.1016/j.automatica.2009.07.006.  Google Scholar

[32]

IEEE, 95 (2007), 163-187. doi: 10.1109/JPROC.2006.887306.  Google Scholar

[33]

Automatica, 45 (2009), 2659-2664. doi: 10.1016/j.automatica.2009.07.022.  Google Scholar

[34]

IEEE Trans. Autom. Control, 49 (2004), 1453-1464. doi: 10.1109/TAC.2004.834121.  Google Scholar

[35]

Int. J. Control, 82 (2009), 1937-1945. doi: 10.1080/00207170902838269.  Google Scholar

[36]

J. Guid. Control Dyn., 28 (2005), 106-114. doi: 10.2514/1.6165.  Google Scholar

[37]

IEEE Trans. Autom. Control, 54 (2009), 293-307. doi: 10.1109/TAC.2008.2010897.  Google Scholar

[38]

IEEE Trans. Autom. Control, 52 (2007), 863-868. doi: 10.1109/TAC.2007.895948.  Google Scholar

[39]

Automatica, 45 (2009), 1347-1353. doi: 10.1016/j.automatica.2009.01.009.  Google Scholar

[40]

Automatica, 44 (2008), 2179-2184. doi: 10.1016/j.automatica.2008.01.004.  Google Scholar

[41]

IEEE Trans. Autom. Control, 54 (2009), 2416-2420. doi: 10.1109/TAC.2009.2029296.  Google Scholar

[42]

Phys. Rev. Lett., 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[43]

Asian J. Control, 10 (2008), 144-155. doi: 10.1002/asjc.15.  Google Scholar

[44]

Int. J. Robust Nonlinear Control, 17 (2007), 941-959. doi: 10.1002/rnc.1144.  Google Scholar

[45]

Discret. Contin. Dyn. Syst., 10 (2008), 973-996. doi: 10.3934/dcdsb.2008.10.973.  Google Scholar

[46]

Europhysics Letters, 83 (2008), 40003. doi: 10.1209/0295-5075/83/40003.  Google Scholar

[47]

Prentice-Hall, Englewood Cliffs, 1998. Google Scholar

[1]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021007

[2]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[3]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[4]

Mayte Pérez-Llanos, Juan Pablo Pinasco, Nicolas Saintier. Opinion fitness and convergence to consensus in homogeneous and heterogeneous populations. Networks & Heterogeneous Media, 2021, 16 (2) : 257-281. doi: 10.3934/nhm.2021006

[5]

Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021082

[6]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[7]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[8]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[9]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[10]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[11]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037

[12]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021051

[13]

Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021044

[14]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[15]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062

[16]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[17]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[18]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[19]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[20]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (144)
  • HTML views (0)
  • Cited by (49)

Other articles
by authors

[Back to Top]