September  2011, 16(2): 489-505. doi: 10.3934/dcdsb.2011.16.489

Consensus of discrete-time linear multi-agent systems with observer-type protocols

1. 

School of Automation, Beijing Institute of Technology, Beijing 100081, P. R., China

2. 

State Key Lab for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, P. R., China

3. 

Department of Electronic Engineering, City University of Hong Kong, Hong Kong

Received  December 2009 Revised  October 2010 Published  June 2011

This paper concerns the consensus of discrete-time multi-agent systems with linear or linearized dynamics. An observer-type protocol based on the relative outputs of neighboring agents is proposed. The consensus of such a multi-agent system with a directed communication topology can be cast into the stability of a set of matrices with the same low dimension as that of a single agent. The notion of discrete-time consensus region is then introduced and analyzed. For neurally stable agents, it is shown that there exists an observer-type protocol having a bounded consensus region in the form of an open unit disk, provided that each agent is stabilizable and detectable. An algorithm is further presented to construct a protocol to achieve consensus with respect to all the communication topologies containing a spanning tree. Moreover, for the case where the agents have no poles outside the unit circle, an algorithm is proposed to construct a protocol having an origin-centered disk of radius
$\delta$ ($0<\delta<1$) as its consensus region. Finally, the consensus algorithms are applied to solve formation control problems of multi-agent systems.
Citation: Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489
References:
[1]

D. Bauso, L. Giarré and R. Pesenti, Consensus for netowrks with unknown but bounded disturbances,, SIAM J. Control Optim., 48 (2009), 1756. doi: 10.1137/060678786. Google Scholar

[2]

S. Bowong and J. L. Dimi, Adaptive synchronization of a class of uncertain chaotic systems,, Discret. Contin. Dyn. Syst., 9 (2008), 235. Google Scholar

[3]

J. Cortés, Distributed algorithms for reaching consensus on general functions,, Automatica, 44 (2008), 726. doi: 10.1016/j.automatica.2007.07.022. Google Scholar

[4]

Z. S. Duan, G. R. Chen and L. Huang, Synchronization of weighted networks and complex synchronized regions,, Phys. Lett. A, 372 (2008), 3741. doi: 10.1016/j.physleta.2008.02.056. Google Scholar

[5]

Z. S. Duan, G. R. Chen and L. Huang, Disconnected synchronized regions of complex dynamical networks,, IEEE Trans. Autom. Control, 54 (2009), 845. doi: 10.1109/TAC.2008.2009690. Google Scholar

[6]

J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle formations,, IEEE Trans. Automat. Control, 49 (2004), 1465. doi: 10.1109/TAC.2004.834433. Google Scholar

[7]

P. Frasca, R. Carli, F. Pagnani and S. Zampieri, Average consensus on networks with quantized communication,, Int. J. Robust Nonlinear Control, 19 (2008), 1787. doi: 10.1002/rnc.1396. Google Scholar

[8]

Y. Hong, J. Hu and L. Gao, Tracking control for multi-agent consensus with an active leader and variable topology,, Automatica, 42 (2006), 1177. doi: 10.1016/j.automatica.2006.02.013. Google Scholar

[9]

Y. Hong, G. R. Chen and L. Bushnell, Distributed observers design for leader-following control of multi-agent,, Automatica, 44 (2008), 846. doi: 10.1016/j.automatica.2007.07.004. Google Scholar

[10]

R. Horn and C. Johnson, "Matrix Analysis,", Cambridge Univ. Press, (1985). Google Scholar

[11]

A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonous agents using neareast neighbor rules,, IEEE Trans. Autom. Control, 48 (2003), 988. doi: 10.1109/TAC.2003.812781. Google Scholar

[12]

T. Katayama, On the matrix Riccati equation for linear systems with a random gain,, IEEE Trans. Autom. Control, 21 (1976), 770. doi: 10.1109/TAC.1976.1101325. Google Scholar

[13]

G. Lafferriere, A. Williams, J. Caughman and J. J. P. Veerman, Decentralized control of vehicle formations,, Syst. Control Lett., 54 (2005), 899. doi: 10.1016/j.sysconle.2005.02.004. Google Scholar

[14]

Z. K. Li, Z. S. Duan and L. Huang, $H_\infty$ control of networked multi-agent systems,, J. Syst. Sci. Complex., 22 (2009), 35. doi: 10.1007/s11424-009-9145-y. Google Scholar

[15]

Z. K. Li, Z. S. Duan, G. R. Chen and L. Huang, Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint,, IEEE Trans. Circuits Syst. I-Regul. Pap., 51 (2010), 213. Google Scholar

[16]

P. Lin, Y. M. Jia and L. Li, Distributed robust $H_\infty$ consensus control in directed networks of agents with time-delay,, Syst. Control Lett., 57 (2008), 643. doi: 10.1016/j.sysconle.2008.01.002. Google Scholar

[17]

P. Lin and Y. M. Jia, Further results on decentralised coordination in networks of agents with second-order dynamics,, IET Contr. Theory Appl., 3 (2009), 957. doi: 10.1049/iet-cta.2008.0263. Google Scholar

[18]

C. Liu, Z. S. Duan, G. R. Chen and L. Huang, Analyzing and controlling the network synchronization regions,, Physica A, 386 (2007), 531. doi: 10.1016/j.physa.2007.08.006. Google Scholar

[19]

C. Q. Ma and J. F. Zhang, Necessary and sufficient conditions for consensusability of linear multi-agent systems,, IEEE Trans. Autom. Control, 55 (2010), 1263. doi: 10.1109/TAC.2010.2042764. Google Scholar

[20]

K. Ogata, "Modern Control Engineering," 3rd, edition, (1996). Google Scholar

[21]

R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Trans. Autom. Control, 49 (2004), 1520. doi: 10.1109/TAC.2004.834113. Google Scholar

[22]

R. Olfati-Saber, Flocking for multi-agent dynamic systems: Algorithms and theory,, IEEE Trans. Autom. Control, 51 (2006), 401. doi: 10.1109/TAC.2005.864190. Google Scholar

[23]

R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems,, Pro. IEEE, 97 (2007), 215. doi: 10.1109/JPROC.2006.887293. Google Scholar

[24]

L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems,, Phys. Rev. Lett., 80 (1998), 2109. doi: 10.1103/PhysRevLett.80.2109. Google Scholar

[25]

W. Ren and R. W. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topogies,, IEEE Trans. Autom. Control, 50 (2005), 655. doi: 10.1109/TAC.2005.846556. Google Scholar

[26]

W. Ren, R. W. Beard and E. M. Atkins, Information consensus in multivehicle cooperative control,, IEEE Control Syst. Mag., 27 (2007), 71. doi: 10.1109/MCS.2007.338264. Google Scholar

[27]

W. Ren, K. L. Moore and Y. Q. Chen, High-order and model reference consensus algorithms in cooperative control of multi-vehicle systems,, J. Dyn. Syst. Meas. Control-Trans. ASME, 129 (2007), 678. Google Scholar

[28]

W. Ren, On consensus algorithms for double-integrator dynamics,, IEEE Trans. Autom. Control, 53 (2008), 1503. Google Scholar

[29]

W. Ren and N. Sorensen, Distributed coordination architecture for multi-robot formation control,, Robot. Auton. Syst., 56 (2008), 324. doi: 10.1016/j.robot.2007.08.005. Google Scholar

[30]

A. Rahmani, M. Ji, M. Mesbahi and M. Egerstedt, Controllability of multi-agent systems from a graph-theorectic perspective,, SIAM J. Control Optim., 48 (2009), 162. doi: 10.1137/060674909. Google Scholar

[31]

L. Scardavi and S. Sepulchre, Synchronization in networks of identical linear systems,, Automatica, 45 (2009), 2557. doi: 10.1016/j.automatica.2009.07.006. Google Scholar

[32]

L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, M. I. Jordan and S. S. Sastry, Foundations of control and estimation over lossy networks, Proc., IEEE, 95 (2007), 163. doi: 10.1109/JPROC.2006.887306. Google Scholar

[33]

J. H. Seo, H. Shim and J. Back, Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach,, Automatica, 45 (2009), 2659. doi: 10.1016/j.automatica.2009.07.022. Google Scholar

[34]

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan and S. S. Sastry, Kalman filtering with intermittent observations,, IEEE Trans. Autom. Control, 49 (2004), 1453. doi: 10.1109/TAC.2004.834121. Google Scholar

[35]

Y. G. Sun and W. Long, Consensus problems in networks of agents with double-integrator dynamics and time-varying delays,, Int. J. Control, 82 (2009), 1937. doi: 10.1080/00207170902838269. Google Scholar

[36]

R. S. Smith and F. Y. Hadaegh, Control of deep-space formation-flying spacecraft; Relative sensing and switched information,, J. Guid. Control Dyn., 28 (2005), 106. doi: 10.2514/1.6165. Google Scholar

[37]

H. S. Su, X. F. Wang and Z. L. Lin, Flocking of multi-agents with a virtual leader,, IEEE Trans. Autom. Control, 54 (2009), 293. doi: 10.1109/TAC.2008.2010897. Google Scholar

[38]

H. G. Tanner, A. Jadbabaie and G. J. Pappas, Flocking in fixed and switching networks,, IEEE Trans. Autom. Control, 52 (2007), 863. doi: 10.1109/TAC.2007.895948. Google Scholar

[39]

Y. P. Tian and C. L. Liu, Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations,, Automatica, 45 (2009), 1347. doi: 10.1016/j.automatica.2009.01.009. Google Scholar

[40]

S. E. Tuna, Synchronizing linear systems via partial-state coupling,, Automatica, 44 (2008), 2179. doi: 10.1016/j.automatica.2008.01.004. Google Scholar

[41]

S. E. Tuna, Conditions for synchronizability in arrays of coupled linear systems,, IEEE Trans. Autom. Control, 54 (2009), 2416. doi: 10.1109/TAC.2009.2029296. Google Scholar

[42]

T. Vicsek, A. Cziroók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transitions in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226. doi: 10.1103/PhysRevLett.75.1226. Google Scholar

[43]

J. H. Wang, D. Z. Cheng and X. M. Hu, Consensus of multi-agent linear dynamic systems,, Asian J. Control, 10 (2008), 144. doi: 10.1002/asjc.15. Google Scholar

[44]

G. Xie and L. Wang, Consensus control for a class of networks of dynamic agents,, Int. J. Robust Nonlinear Control, 17 (2007), 941. doi: 10.1002/rnc.1144. Google Scholar

[45]

R. Yamapi and R. S. Mackay, Stability of synchronization in a shift-invariant ring of mutually coupled oscillators,, Discret. Contin. Dyn. Syst., 10 (2008), 973. doi: 10.3934/dcdsb.2008.10.973. Google Scholar

[46]

H. T. Zhang, M. Z. Q. Chen, T. Zhou and G. B. Stan, Ultrafast consensus via predictive mechanisms,, Europhysics Letters, 83 (2008). doi: 10.1209/0295-5075/83/40003. Google Scholar

[47]

K. M. Zhou and J. C. Doyle, "Essentials of Robust Control,", Prentice-Hall, (1998). Google Scholar

show all references

References:
[1]

D. Bauso, L. Giarré and R. Pesenti, Consensus for netowrks with unknown but bounded disturbances,, SIAM J. Control Optim., 48 (2009), 1756. doi: 10.1137/060678786. Google Scholar

[2]

S. Bowong and J. L. Dimi, Adaptive synchronization of a class of uncertain chaotic systems,, Discret. Contin. Dyn. Syst., 9 (2008), 235. Google Scholar

[3]

J. Cortés, Distributed algorithms for reaching consensus on general functions,, Automatica, 44 (2008), 726. doi: 10.1016/j.automatica.2007.07.022. Google Scholar

[4]

Z. S. Duan, G. R. Chen and L. Huang, Synchronization of weighted networks and complex synchronized regions,, Phys. Lett. A, 372 (2008), 3741. doi: 10.1016/j.physleta.2008.02.056. Google Scholar

[5]

Z. S. Duan, G. R. Chen and L. Huang, Disconnected synchronized regions of complex dynamical networks,, IEEE Trans. Autom. Control, 54 (2009), 845. doi: 10.1109/TAC.2008.2009690. Google Scholar

[6]

J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle formations,, IEEE Trans. Automat. Control, 49 (2004), 1465. doi: 10.1109/TAC.2004.834433. Google Scholar

[7]

P. Frasca, R. Carli, F. Pagnani and S. Zampieri, Average consensus on networks with quantized communication,, Int. J. Robust Nonlinear Control, 19 (2008), 1787. doi: 10.1002/rnc.1396. Google Scholar

[8]

Y. Hong, J. Hu and L. Gao, Tracking control for multi-agent consensus with an active leader and variable topology,, Automatica, 42 (2006), 1177. doi: 10.1016/j.automatica.2006.02.013. Google Scholar

[9]

Y. Hong, G. R. Chen and L. Bushnell, Distributed observers design for leader-following control of multi-agent,, Automatica, 44 (2008), 846. doi: 10.1016/j.automatica.2007.07.004. Google Scholar

[10]

R. Horn and C. Johnson, "Matrix Analysis,", Cambridge Univ. Press, (1985). Google Scholar

[11]

A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonous agents using neareast neighbor rules,, IEEE Trans. Autom. Control, 48 (2003), 988. doi: 10.1109/TAC.2003.812781. Google Scholar

[12]

T. Katayama, On the matrix Riccati equation for linear systems with a random gain,, IEEE Trans. Autom. Control, 21 (1976), 770. doi: 10.1109/TAC.1976.1101325. Google Scholar

[13]

G. Lafferriere, A. Williams, J. Caughman and J. J. P. Veerman, Decentralized control of vehicle formations,, Syst. Control Lett., 54 (2005), 899. doi: 10.1016/j.sysconle.2005.02.004. Google Scholar

[14]

Z. K. Li, Z. S. Duan and L. Huang, $H_\infty$ control of networked multi-agent systems,, J. Syst. Sci. Complex., 22 (2009), 35. doi: 10.1007/s11424-009-9145-y. Google Scholar

[15]

Z. K. Li, Z. S. Duan, G. R. Chen and L. Huang, Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint,, IEEE Trans. Circuits Syst. I-Regul. Pap., 51 (2010), 213. Google Scholar

[16]

P. Lin, Y. M. Jia and L. Li, Distributed robust $H_\infty$ consensus control in directed networks of agents with time-delay,, Syst. Control Lett., 57 (2008), 643. doi: 10.1016/j.sysconle.2008.01.002. Google Scholar

[17]

P. Lin and Y. M. Jia, Further results on decentralised coordination in networks of agents with second-order dynamics,, IET Contr. Theory Appl., 3 (2009), 957. doi: 10.1049/iet-cta.2008.0263. Google Scholar

[18]

C. Liu, Z. S. Duan, G. R. Chen and L. Huang, Analyzing and controlling the network synchronization regions,, Physica A, 386 (2007), 531. doi: 10.1016/j.physa.2007.08.006. Google Scholar

[19]

C. Q. Ma and J. F. Zhang, Necessary and sufficient conditions for consensusability of linear multi-agent systems,, IEEE Trans. Autom. Control, 55 (2010), 1263. doi: 10.1109/TAC.2010.2042764. Google Scholar

[20]

K. Ogata, "Modern Control Engineering," 3rd, edition, (1996). Google Scholar

[21]

R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Trans. Autom. Control, 49 (2004), 1520. doi: 10.1109/TAC.2004.834113. Google Scholar

[22]

R. Olfati-Saber, Flocking for multi-agent dynamic systems: Algorithms and theory,, IEEE Trans. Autom. Control, 51 (2006), 401. doi: 10.1109/TAC.2005.864190. Google Scholar

[23]

R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems,, Pro. IEEE, 97 (2007), 215. doi: 10.1109/JPROC.2006.887293. Google Scholar

[24]

L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems,, Phys. Rev. Lett., 80 (1998), 2109. doi: 10.1103/PhysRevLett.80.2109. Google Scholar

[25]

W. Ren and R. W. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topogies,, IEEE Trans. Autom. Control, 50 (2005), 655. doi: 10.1109/TAC.2005.846556. Google Scholar

[26]

W. Ren, R. W. Beard and E. M. Atkins, Information consensus in multivehicle cooperative control,, IEEE Control Syst. Mag., 27 (2007), 71. doi: 10.1109/MCS.2007.338264. Google Scholar

[27]

W. Ren, K. L. Moore and Y. Q. Chen, High-order and model reference consensus algorithms in cooperative control of multi-vehicle systems,, J. Dyn. Syst. Meas. Control-Trans. ASME, 129 (2007), 678. Google Scholar

[28]

W. Ren, On consensus algorithms for double-integrator dynamics,, IEEE Trans. Autom. Control, 53 (2008), 1503. Google Scholar

[29]

W. Ren and N. Sorensen, Distributed coordination architecture for multi-robot formation control,, Robot. Auton. Syst., 56 (2008), 324. doi: 10.1016/j.robot.2007.08.005. Google Scholar

[30]

A. Rahmani, M. Ji, M. Mesbahi and M. Egerstedt, Controllability of multi-agent systems from a graph-theorectic perspective,, SIAM J. Control Optim., 48 (2009), 162. doi: 10.1137/060674909. Google Scholar

[31]

L. Scardavi and S. Sepulchre, Synchronization in networks of identical linear systems,, Automatica, 45 (2009), 2557. doi: 10.1016/j.automatica.2009.07.006. Google Scholar

[32]

L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, M. I. Jordan and S. S. Sastry, Foundations of control and estimation over lossy networks, Proc., IEEE, 95 (2007), 163. doi: 10.1109/JPROC.2006.887306. Google Scholar

[33]

J. H. Seo, H. Shim and J. Back, Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach,, Automatica, 45 (2009), 2659. doi: 10.1016/j.automatica.2009.07.022. Google Scholar

[34]

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan and S. S. Sastry, Kalman filtering with intermittent observations,, IEEE Trans. Autom. Control, 49 (2004), 1453. doi: 10.1109/TAC.2004.834121. Google Scholar

[35]

Y. G. Sun and W. Long, Consensus problems in networks of agents with double-integrator dynamics and time-varying delays,, Int. J. Control, 82 (2009), 1937. doi: 10.1080/00207170902838269. Google Scholar

[36]

R. S. Smith and F. Y. Hadaegh, Control of deep-space formation-flying spacecraft; Relative sensing and switched information,, J. Guid. Control Dyn., 28 (2005), 106. doi: 10.2514/1.6165. Google Scholar

[37]

H. S. Su, X. F. Wang and Z. L. Lin, Flocking of multi-agents with a virtual leader,, IEEE Trans. Autom. Control, 54 (2009), 293. doi: 10.1109/TAC.2008.2010897. Google Scholar

[38]

H. G. Tanner, A. Jadbabaie and G. J. Pappas, Flocking in fixed and switching networks,, IEEE Trans. Autom. Control, 52 (2007), 863. doi: 10.1109/TAC.2007.895948. Google Scholar

[39]

Y. P. Tian and C. L. Liu, Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations,, Automatica, 45 (2009), 1347. doi: 10.1016/j.automatica.2009.01.009. Google Scholar

[40]

S. E. Tuna, Synchronizing linear systems via partial-state coupling,, Automatica, 44 (2008), 2179. doi: 10.1016/j.automatica.2008.01.004. Google Scholar

[41]

S. E. Tuna, Conditions for synchronizability in arrays of coupled linear systems,, IEEE Trans. Autom. Control, 54 (2009), 2416. doi: 10.1109/TAC.2009.2029296. Google Scholar

[42]

T. Vicsek, A. Cziroók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transitions in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226. doi: 10.1103/PhysRevLett.75.1226. Google Scholar

[43]

J. H. Wang, D. Z. Cheng and X. M. Hu, Consensus of multi-agent linear dynamic systems,, Asian J. Control, 10 (2008), 144. doi: 10.1002/asjc.15. Google Scholar

[44]

G. Xie and L. Wang, Consensus control for a class of networks of dynamic agents,, Int. J. Robust Nonlinear Control, 17 (2007), 941. doi: 10.1002/rnc.1144. Google Scholar

[45]

R. Yamapi and R. S. Mackay, Stability of synchronization in a shift-invariant ring of mutually coupled oscillators,, Discret. Contin. Dyn. Syst., 10 (2008), 973. doi: 10.3934/dcdsb.2008.10.973. Google Scholar

[46]

H. T. Zhang, M. Z. Q. Chen, T. Zhou and G. B. Stan, Ultrafast consensus via predictive mechanisms,, Europhysics Letters, 83 (2008). doi: 10.1209/0295-5075/83/40003. Google Scholar

[47]

K. M. Zhou and J. C. Doyle, "Essentials of Robust Control,", Prentice-Hall, (1998). Google Scholar

[1]

Yibo Zhang, Jinfeng Gao, Jia Ren, Huijiao Wang. A type of new consensus protocol for two-dimension multi-agent systems. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 345-357. doi: 10.3934/naco.2017022

[2]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[3]

Hong Man, Yibin Yu, Yuebang He, Hui Huang. Design of one type of linear network prediction controller for multi-agent system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 727-734. doi: 10.3934/dcdss.2019047

[4]

Wenlian Lu, Fatihcan M. Atay, Jürgen Jost. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks & Heterogeneous Media, 2011, 6 (2) : 329-349. doi: 10.3934/nhm.2011.6.329

[5]

Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks & Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012

[6]

Shaohong Fang, Jing Huang, Jinying Ma. Stabilization of a discrete-time system via nonlinear impulsive control. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020106

[7]

Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005

[8]

Tyrone E. Duncan. Some partially observed multi-agent linear exponential quadratic stochastic differential games. Evolution Equations & Control Theory, 2018, 7 (4) : 587-597. doi: 10.3934/eect.2018028

[9]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

[10]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[11]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[12]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[13]

Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277

[14]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[15]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[16]

Alexander J. Zaslavski. The turnpike property of discrete-time control problems arising in economic dynamics. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 861-880. doi: 10.3934/dcdsb.2005.5.861

[17]

Brendan Pass. Multi-marginal optimal transport and multi-agent matching problems: Uniqueness and structure of solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1623-1639. doi: 10.3934/dcds.2014.34.1623

[18]

Tudor Bînzar, Cristian Lăzureanu. A Rikitake type system with one control. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1755-1776. doi: 10.3934/dcdsb.2013.18.1755

[19]

Amir Adibzadeh, Mohsen Zamani, Amir A. Suratgar, Mohammad B. Menhaj. Constrained optimal consensus in dynamical networks. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 349-360. doi: 10.3934/naco.2019023

[20]

Huan Su, Pengfei Wang, Xiaohua Ding. Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 253-269. doi: 10.3934/dcdsb.2016.21.253

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (38)

Other articles
by authors

[Back to Top]