September  2011, 16(2): 489-505. doi: 10.3934/dcdsb.2011.16.489

Consensus of discrete-time linear multi-agent systems with observer-type protocols

1. 

School of Automation, Beijing Institute of Technology, Beijing 100081, P. R., China

2. 

State Key Lab for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, P. R., China

3. 

Department of Electronic Engineering, City University of Hong Kong, Hong Kong

Received  December 2009 Revised  October 2010 Published  June 2011

This paper concerns the consensus of discrete-time multi-agent systems with linear or linearized dynamics. An observer-type protocol based on the relative outputs of neighboring agents is proposed. The consensus of such a multi-agent system with a directed communication topology can be cast into the stability of a set of matrices with the same low dimension as that of a single agent. The notion of discrete-time consensus region is then introduced and analyzed. For neurally stable agents, it is shown that there exists an observer-type protocol having a bounded consensus region in the form of an open unit disk, provided that each agent is stabilizable and detectable. An algorithm is further presented to construct a protocol to achieve consensus with respect to all the communication topologies containing a spanning tree. Moreover, for the case where the agents have no poles outside the unit circle, an algorithm is proposed to construct a protocol having an origin-centered disk of radius
$\delta$ ($0<\delta<1$) as its consensus region. Finally, the consensus algorithms are applied to solve formation control problems of multi-agent systems.
Citation: Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489
References:
[1]

D. Bauso, L. Giarré and R. Pesenti, Consensus for netowrks with unknown but bounded disturbances, SIAM J. Control Optim., 48 (2009), 1756-1770. doi: 10.1137/060678786.

[2]

S. Bowong and J. L. Dimi, Adaptive synchronization of a class of uncertain chaotic systems, Discret. Contin. Dyn. Syst., 9 (2008), 235-248.

[3]

J. Cortés, Distributed algorithms for reaching consensus on general functions, Automatica, 44 (2008), 726-737. doi: 10.1016/j.automatica.2007.07.022.

[4]

Z. S. Duan, G. R. Chen and L. Huang, Synchronization of weighted networks and complex synchronized regions, Phys. Lett. A, 372 (2008), 3741-3751. doi: 10.1016/j.physleta.2008.02.056.

[5]

Z. S. Duan, G. R. Chen and L. Huang, Disconnected synchronized regions of complex dynamical networks, IEEE Trans. Autom. Control, 54 (2009), 845-849. doi: 10.1109/TAC.2008.2009690.

[6]

J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle formations, IEEE Trans. Automat. Control, 49 (2004), 1465-1476. doi: 10.1109/TAC.2004.834433.

[7]

P. Frasca, R. Carli, F. Pagnani and S. Zampieri, Average consensus on networks with quantized communication, Int. J. Robust Nonlinear Control, 19 (2008), 1787-1816. doi: 10.1002/rnc.1396.

[8]

Y. Hong, J. Hu and L. Gao, Tracking control for multi-agent consensus with an active leader and variable topology, Automatica, 42 (2006), 1177-1182. doi: 10.1016/j.automatica.2006.02.013.

[9]

Y. Hong, G. R. Chen and L. Bushnell, Distributed observers design for leader-following control of multi-agent, Automatica, 44 (2008), 846-850. doi: 10.1016/j.automatica.2007.07.004.

[10]

R. Horn and C. Johnson, "Matrix Analysis," Cambridge Univ. Press, New York, 1985.

[11]

A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonous agents using neareast neighbor rules, IEEE Trans. Autom. Control, 48 (2003), 988-1001. doi: 10.1109/TAC.2003.812781.

[12]

T. Katayama, On the matrix Riccati equation for linear systems with a random gain, IEEE Trans. Autom. Control, 21 (1976), 770-771. doi: 10.1109/TAC.1976.1101325.

[13]

G. Lafferriere, A. Williams, J. Caughman and J. J. P. Veerman, Decentralized control of vehicle formations, Syst. Control Lett., 54 (2005), 899-910. doi: 10.1016/j.sysconle.2005.02.004.

[14]

Z. K. Li, Z. S. Duan and L. Huang, $H_\infty$ control of networked multi-agent systems, J. Syst. Sci. Complex., 22 (2009), 35-48. doi: 10.1007/s11424-009-9145-y.

[15]

Z. K. Li, Z. S. Duan, G. R. Chen and L. Huang, Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Trans. Circuits Syst. I-Regul. Pap., 51 (2010), 213-224.

[16]

P. Lin, Y. M. Jia and L. Li, Distributed robust $H_\infty$ consensus control in directed networks of agents with time-delay, Syst. Control Lett., 57 (2008), 643-653. doi: 10.1016/j.sysconle.2008.01.002.

[17]

P. Lin and Y. M. Jia, Further results on decentralised coordination in networks of agents with second-order dynamics, IET Contr. Theory Appl., 3 (2009), 957-970. doi: 10.1049/iet-cta.2008.0263.

[18]

C. Liu, Z. S. Duan, G. R. Chen and L. Huang, Analyzing and controlling the network synchronization regions, Physica A, 386 (2007), 531-542. doi: 10.1016/j.physa.2007.08.006.

[19]

C. Q. Ma and J. F. Zhang, Necessary and sufficient conditions for consensusability of linear multi-agent systems, IEEE Trans. Autom. Control, 55 (2010), 1263-1268. doi: 10.1109/TAC.2010.2042764.

[20]

K. Ogata, "Modern Control Engineering," 3rd edition, Prentice Hall: Englewood Cliffs, 1996.

[21]

R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49 (2004), 1520-1533. doi: 10.1109/TAC.2004.834113.

[22]

R. Olfati-Saber, Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Autom. Control, 51 (2006), 401-420. doi: 10.1109/TAC.2005.864190.

[23]

R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems, Pro. IEEE, 97 (2007), 215-233. doi: 10.1109/JPROC.2006.887293.

[24]

L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80 (1998), 2109-2112. doi: 10.1103/PhysRevLett.80.2109.

[25]

W. Ren and R. W. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topogies, IEEE Trans. Autom. Control, 50 (2005), 655-661. doi: 10.1109/TAC.2005.846556.

[26]

W. Ren, R. W. Beard and E. M. Atkins, Information consensus in multivehicle cooperative control, IEEE Control Syst. Mag., 27 (2007), 71-82. doi: 10.1109/MCS.2007.338264.

[27]

W. Ren, K. L. Moore and Y. Q. Chen, High-order and model reference consensus algorithms in cooperative control of multi-vehicle systems, J. Dyn. Syst. Meas. Control-Trans. ASME, 129 (2007), 678-688.

[28]

W. Ren, On consensus algorithms for double-integrator dynamics, IEEE Trans. Autom. Control, 53 (2008), 1503-1509.

[29]

W. Ren and N. Sorensen, Distributed coordination architecture for multi-robot formation control, Robot. Auton. Syst., 56 (2008), 324-333. doi: 10.1016/j.robot.2007.08.005.

[30]

A. Rahmani, M. Ji, M. Mesbahi and M. Egerstedt, Controllability of multi-agent systems from a graph-theorectic perspective, SIAM J. Control Optim., 48 (2009), 162-186. doi: 10.1137/060674909.

[31]

L. Scardavi and S. Sepulchre, Synchronization in networks of identical linear systems, Automatica, 45 (2009), 2557-2562. doi: 10.1016/j.automatica.2009.07.006.

[32]

L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, M. I. Jordan and S. S. Sastry, Foundations of control and estimation over lossy networks, Proc. IEEE, 95 (2007), 163-187. doi: 10.1109/JPROC.2006.887306.

[33]

J. H. Seo, H. Shim and J. Back, Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach, Automatica, 45 (2009), 2659-2664. doi: 10.1016/j.automatica.2009.07.022.

[34]

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan and S. S. Sastry, Kalman filtering with intermittent observations, IEEE Trans. Autom. Control, 49 (2004), 1453-1464. doi: 10.1109/TAC.2004.834121.

[35]

Y. G. Sun and W. Long, Consensus problems in networks of agents with double-integrator dynamics and time-varying delays, Int. J. Control, 82 (2009), 1937-1945. doi: 10.1080/00207170902838269.

[36]

R. S. Smith and F. Y. Hadaegh, Control of deep-space formation-flying spacecraft; Relative sensing and switched information, J. Guid. Control Dyn., 28 (2005), 106-114. doi: 10.2514/1.6165.

[37]

H. S. Su, X. F. Wang and Z. L. Lin, Flocking of multi-agents with a virtual leader, IEEE Trans. Autom. Control, 54 (2009), 293-307. doi: 10.1109/TAC.2008.2010897.

[38]

H. G. Tanner, A. Jadbabaie and G. J. Pappas, Flocking in fixed and switching networks, IEEE Trans. Autom. Control, 52 (2007), 863-868. doi: 10.1109/TAC.2007.895948.

[39]

Y. P. Tian and C. L. Liu, Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations, Automatica, 45 (2009), 1347-1353. doi: 10.1016/j.automatica.2009.01.009.

[40]

S. E. Tuna, Synchronizing linear systems via partial-state coupling, Automatica, 44 (2008), 2179-2184. doi: 10.1016/j.automatica.2008.01.004.

[41]

S. E. Tuna, Conditions for synchronizability in arrays of coupled linear systems, IEEE Trans. Autom. Control, 54 (2009), 2416-2420. doi: 10.1109/TAC.2009.2029296.

[42]

T. Vicsek, A. Cziroók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transitions in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226.

[43]

J. H. Wang, D. Z. Cheng and X. M. Hu, Consensus of multi-agent linear dynamic systems, Asian J. Control, 10 (2008), 144-155. doi: 10.1002/asjc.15.

[44]

G. Xie and L. Wang, Consensus control for a class of networks of dynamic agents, Int. J. Robust Nonlinear Control, 17 (2007), 941-959. doi: 10.1002/rnc.1144.

[45]

R. Yamapi and R. S. Mackay, Stability of synchronization in a shift-invariant ring of mutually coupled oscillators, Discret. Contin. Dyn. Syst., 10 (2008), 973-996. doi: 10.3934/dcdsb.2008.10.973.

[46]

H. T. Zhang, M. Z. Q. Chen, T. Zhou and G. B. Stan, Ultrafast consensus via predictive mechanisms, Europhysics Letters, 83 (2008), 40003. doi: 10.1209/0295-5075/83/40003.

[47]

K. M. Zhou and J. C. Doyle, "Essentials of Robust Control," Prentice-Hall, Englewood Cliffs, 1998.

show all references

References:
[1]

D. Bauso, L. Giarré and R. Pesenti, Consensus for netowrks with unknown but bounded disturbances, SIAM J. Control Optim., 48 (2009), 1756-1770. doi: 10.1137/060678786.

[2]

S. Bowong and J. L. Dimi, Adaptive synchronization of a class of uncertain chaotic systems, Discret. Contin. Dyn. Syst., 9 (2008), 235-248.

[3]

J. Cortés, Distributed algorithms for reaching consensus on general functions, Automatica, 44 (2008), 726-737. doi: 10.1016/j.automatica.2007.07.022.

[4]

Z. S. Duan, G. R. Chen and L. Huang, Synchronization of weighted networks and complex synchronized regions, Phys. Lett. A, 372 (2008), 3741-3751. doi: 10.1016/j.physleta.2008.02.056.

[5]

Z. S. Duan, G. R. Chen and L. Huang, Disconnected synchronized regions of complex dynamical networks, IEEE Trans. Autom. Control, 54 (2009), 845-849. doi: 10.1109/TAC.2008.2009690.

[6]

J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle formations, IEEE Trans. Automat. Control, 49 (2004), 1465-1476. doi: 10.1109/TAC.2004.834433.

[7]

P. Frasca, R. Carli, F. Pagnani and S. Zampieri, Average consensus on networks with quantized communication, Int. J. Robust Nonlinear Control, 19 (2008), 1787-1816. doi: 10.1002/rnc.1396.

[8]

Y. Hong, J. Hu and L. Gao, Tracking control for multi-agent consensus with an active leader and variable topology, Automatica, 42 (2006), 1177-1182. doi: 10.1016/j.automatica.2006.02.013.

[9]

Y. Hong, G. R. Chen and L. Bushnell, Distributed observers design for leader-following control of multi-agent, Automatica, 44 (2008), 846-850. doi: 10.1016/j.automatica.2007.07.004.

[10]

R. Horn and C. Johnson, "Matrix Analysis," Cambridge Univ. Press, New York, 1985.

[11]

A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonous agents using neareast neighbor rules, IEEE Trans. Autom. Control, 48 (2003), 988-1001. doi: 10.1109/TAC.2003.812781.

[12]

T. Katayama, On the matrix Riccati equation for linear systems with a random gain, IEEE Trans. Autom. Control, 21 (1976), 770-771. doi: 10.1109/TAC.1976.1101325.

[13]

G. Lafferriere, A. Williams, J. Caughman and J. J. P. Veerman, Decentralized control of vehicle formations, Syst. Control Lett., 54 (2005), 899-910. doi: 10.1016/j.sysconle.2005.02.004.

[14]

Z. K. Li, Z. S. Duan and L. Huang, $H_\infty$ control of networked multi-agent systems, J. Syst. Sci. Complex., 22 (2009), 35-48. doi: 10.1007/s11424-009-9145-y.

[15]

Z. K. Li, Z. S. Duan, G. R. Chen and L. Huang, Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Trans. Circuits Syst. I-Regul. Pap., 51 (2010), 213-224.

[16]

P. Lin, Y. M. Jia and L. Li, Distributed robust $H_\infty$ consensus control in directed networks of agents with time-delay, Syst. Control Lett., 57 (2008), 643-653. doi: 10.1016/j.sysconle.2008.01.002.

[17]

P. Lin and Y. M. Jia, Further results on decentralised coordination in networks of agents with second-order dynamics, IET Contr. Theory Appl., 3 (2009), 957-970. doi: 10.1049/iet-cta.2008.0263.

[18]

C. Liu, Z. S. Duan, G. R. Chen and L. Huang, Analyzing and controlling the network synchronization regions, Physica A, 386 (2007), 531-542. doi: 10.1016/j.physa.2007.08.006.

[19]

C. Q. Ma and J. F. Zhang, Necessary and sufficient conditions for consensusability of linear multi-agent systems, IEEE Trans. Autom. Control, 55 (2010), 1263-1268. doi: 10.1109/TAC.2010.2042764.

[20]

K. Ogata, "Modern Control Engineering," 3rd edition, Prentice Hall: Englewood Cliffs, 1996.

[21]

R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49 (2004), 1520-1533. doi: 10.1109/TAC.2004.834113.

[22]

R. Olfati-Saber, Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Autom. Control, 51 (2006), 401-420. doi: 10.1109/TAC.2005.864190.

[23]

R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems, Pro. IEEE, 97 (2007), 215-233. doi: 10.1109/JPROC.2006.887293.

[24]

L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80 (1998), 2109-2112. doi: 10.1103/PhysRevLett.80.2109.

[25]

W. Ren and R. W. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topogies, IEEE Trans. Autom. Control, 50 (2005), 655-661. doi: 10.1109/TAC.2005.846556.

[26]

W. Ren, R. W. Beard and E. M. Atkins, Information consensus in multivehicle cooperative control, IEEE Control Syst. Mag., 27 (2007), 71-82. doi: 10.1109/MCS.2007.338264.

[27]

W. Ren, K. L. Moore and Y. Q. Chen, High-order and model reference consensus algorithms in cooperative control of multi-vehicle systems, J. Dyn. Syst. Meas. Control-Trans. ASME, 129 (2007), 678-688.

[28]

W. Ren, On consensus algorithms for double-integrator dynamics, IEEE Trans. Autom. Control, 53 (2008), 1503-1509.

[29]

W. Ren and N. Sorensen, Distributed coordination architecture for multi-robot formation control, Robot. Auton. Syst., 56 (2008), 324-333. doi: 10.1016/j.robot.2007.08.005.

[30]

A. Rahmani, M. Ji, M. Mesbahi and M. Egerstedt, Controllability of multi-agent systems from a graph-theorectic perspective, SIAM J. Control Optim., 48 (2009), 162-186. doi: 10.1137/060674909.

[31]

L. Scardavi and S. Sepulchre, Synchronization in networks of identical linear systems, Automatica, 45 (2009), 2557-2562. doi: 10.1016/j.automatica.2009.07.006.

[32]

L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, M. I. Jordan and S. S. Sastry, Foundations of control and estimation over lossy networks, Proc. IEEE, 95 (2007), 163-187. doi: 10.1109/JPROC.2006.887306.

[33]

J. H. Seo, H. Shim and J. Back, Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach, Automatica, 45 (2009), 2659-2664. doi: 10.1016/j.automatica.2009.07.022.

[34]

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan and S. S. Sastry, Kalman filtering with intermittent observations, IEEE Trans. Autom. Control, 49 (2004), 1453-1464. doi: 10.1109/TAC.2004.834121.

[35]

Y. G. Sun and W. Long, Consensus problems in networks of agents with double-integrator dynamics and time-varying delays, Int. J. Control, 82 (2009), 1937-1945. doi: 10.1080/00207170902838269.

[36]

R. S. Smith and F. Y. Hadaegh, Control of deep-space formation-flying spacecraft; Relative sensing and switched information, J. Guid. Control Dyn., 28 (2005), 106-114. doi: 10.2514/1.6165.

[37]

H. S. Su, X. F. Wang and Z. L. Lin, Flocking of multi-agents with a virtual leader, IEEE Trans. Autom. Control, 54 (2009), 293-307. doi: 10.1109/TAC.2008.2010897.

[38]

H. G. Tanner, A. Jadbabaie and G. J. Pappas, Flocking in fixed and switching networks, IEEE Trans. Autom. Control, 52 (2007), 863-868. doi: 10.1109/TAC.2007.895948.

[39]

Y. P. Tian and C. L. Liu, Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations, Automatica, 45 (2009), 1347-1353. doi: 10.1016/j.automatica.2009.01.009.

[40]

S. E. Tuna, Synchronizing linear systems via partial-state coupling, Automatica, 44 (2008), 2179-2184. doi: 10.1016/j.automatica.2008.01.004.

[41]

S. E. Tuna, Conditions for synchronizability in arrays of coupled linear systems, IEEE Trans. Autom. Control, 54 (2009), 2416-2420. doi: 10.1109/TAC.2009.2029296.

[42]

T. Vicsek, A. Cziroók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transitions in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226.

[43]

J. H. Wang, D. Z. Cheng and X. M. Hu, Consensus of multi-agent linear dynamic systems, Asian J. Control, 10 (2008), 144-155. doi: 10.1002/asjc.15.

[44]

G. Xie and L. Wang, Consensus control for a class of networks of dynamic agents, Int. J. Robust Nonlinear Control, 17 (2007), 941-959. doi: 10.1002/rnc.1144.

[45]

R. Yamapi and R. S. Mackay, Stability of synchronization in a shift-invariant ring of mutually coupled oscillators, Discret. Contin. Dyn. Syst., 10 (2008), 973-996. doi: 10.3934/dcdsb.2008.10.973.

[46]

H. T. Zhang, M. Z. Q. Chen, T. Zhou and G. B. Stan, Ultrafast consensus via predictive mechanisms, Europhysics Letters, 83 (2008), 40003. doi: 10.1209/0295-5075/83/40003.

[47]

K. M. Zhou and J. C. Doyle, "Essentials of Robust Control," Prentice-Hall, Englewood Cliffs, 1998.

[1]

Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111

[2]

Yibo Zhang, Jinfeng Gao, Jia Ren, Huijiao Wang. A type of new consensus protocol for two-dimension multi-agent systems. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 345-357. doi: 10.3934/naco.2017022

[3]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[4]

Mei Luo, Jinrong Wang, Yumei Liao. Bounded consensus of double-integrator stochastic multi-agent systems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022088

[5]

Hong Man, Yibin Yu, Yuebang He, Hui Huang. Design of one type of linear network prediction controller for multi-agent system. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 727-734. doi: 10.3934/dcdss.2019047

[6]

Wenlian Lu, Fatihcan M. Atay, Jürgen Jost. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks and Heterogeneous Media, 2011, 6 (2) : 329-349. doi: 10.3934/nhm.2011.6.329

[7]

Ke Yang, Wencheng Zou, Zhengrong Xiang, Ronghao Wang. Fully distributed consensus for higher-order nonlinear multi-agent systems with unmatched disturbances. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1535-1551. doi: 10.3934/dcdss.2020396

[8]

Xiaojin Huang, Hongfu Yang, Jianhua Huang. Consensus stability analysis for stochastic multi-agent systems with multiplicative measurement noises and Markovian switching topologies. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021024

[9]

Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks and Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012

[10]

Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105

[11]

Shaohong Fang, Jing Huang, Jinying Ma. Stabilization of a discrete-time system via nonlinear impulsive control. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1803-1811. doi: 10.3934/dcdss.2020106

[12]

Yueyuan Zhang, Yanyan Yin, Fei Liu. Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3013-3026. doi: 10.3934/jimo.2020105

[13]

Nadia Loy, Andrea Tosin. Boltzmann-type equations for multi-agent systems with label switching. Kinetic and Related Models, 2021, 14 (5) : 867-894. doi: 10.3934/krm.2021027

[14]

Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005

[15]

Richard Carney, Monique Chyba, Chris Gray, George Wilkens, Corey Shanbrom. Multi-agent systems for quadcopters. Journal of Geometric Mechanics, 2022, 14 (1) : 1-28. doi: 10.3934/jgm.2021005

[16]

Tyrone E. Duncan. Some partially observed multi-agent linear exponential quadratic stochastic differential games. Evolution Equations and Control Theory, 2018, 7 (4) : 587-597. doi: 10.3934/eect.2018028

[17]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

[18]

Hongru Ren, Shubo Li, Changxin Lu. Event-triggered adaptive fault-tolerant control for multi-agent systems with unknown disturbances. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1395-1414. doi: 10.3934/dcdss.2020379

[19]

GuanLin Li, Sebastien Motsch, Dylan Weber. Bounded confidence dynamics and graph control: Enforcing consensus. Networks and Heterogeneous Media, 2020, 15 (3) : 489-517. doi: 10.3934/nhm.2020028

[20]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial and Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (231)
  • HTML views (0)
  • Cited by (49)

Other articles
by authors

[Back to Top]