September  2011, 16(2): 507-527. doi: 10.3934/dcdsb.2011.16.507

Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation

1. 

School of Mathematics and Systems Science & LMIB, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China

2. 

Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China

3. 

School of Mathematics and Systems Science, Beijing University of Aeronautics-Astronautics, Beijing 100191, China, China, China

Received  February 2010 Revised  December 2010 Published  June 2011

In this paper, a three dimensional Ginburg-Landau type equation is considered. Firstly, two families of new traveling wave solutions in term of explicit functions are presented by using the homogeneous balance method, in which one consists of variable-amplitude solutions and the other constant-amplitude solutions (namely, plane wave solutions). Moreover, the stability of plane wave solutions is analyzed by using the regular phase plane techniques.
Citation: Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507
References:
[1]

J. M. Ghidaglia and B. Héron, Dimension of the attractor associated to the Ginzburg-Landau equation,, Phys. D, 28 (1987), 282.  doi: 10.1016/0167-2789(87)90020-0.  Google Scholar

[2]

C. R. Doering, J. D. Gibbon, D. Holm and B. Nicolaenko, Low-dimensional behavior in the complex Ginzburg-Landau equation,, Nonlinearity, 1 (1988), 279.  doi: 10.1088/0951-7715/1/2/001.  Google Scholar

[3]

K. Promislow, Induced trajectories and approximate inertial manifolds for the Ginzburg-Landau partial differential equation,, Physica D, 41 (1990), 232.  doi: 10.1016/0167-2789(90)90125-9.  Google Scholar

[4]

C. Bu, On the Cauch problem for the 1+2 complex Ginzburg-Landau equation,, J. Austral Math. Soc. Ser. B, 36 (1994), 313.  doi: 10.1017/S0334270000010468.  Google Scholar

[5]

S. J. Lü, The dynamical behavior of the Ginzburg-Landau equation and its Fourier spectral approximation,, Numerical Mathematics, 22 (2000), 1.   Google Scholar

[6]

H. J. Gao and J. Q. Duan, On the initial value problem for the generalized 2D Ginzburg-Landau equation,, J. Math. Anal. Appl., 216 (1997), 536.  doi: 10.1006/jmaa.1997.5682.  Google Scholar

[7]

H. J. Gao and J. Q. Duan, Asymptotics for the generalized two-dimensional Ginzburg-Landau equation,, J. Math. Anal. Appl., 247 (2000), 198.  doi: 10.1006/jmaa.2000.6848.  Google Scholar

[8]

S. J. Lü and Q. S. Lu, A linear discrete scheme for the Ginzburg-Landau equation,, International Journal of Computer Mathematics, 85 (2008), 745.  doi: 10.1080/00207160701253810.  Google Scholar

[9]

B. L. Guo and B. X. Wang, Finite dimensional behavior for the derivative Ginzburg-Landau equation in two spatial dimensions,, Phys. D, 89 (1995), 83.  doi: 10.1016/0167-2789(95)00216-2.  Google Scholar

[10]

J. D. Carter, "Stability and Existence of Traveling Wave Solutions of the Two-dimensional Nonlinear Schrödinger Equation and its Higher-order Generalizations,", Ph.D. Thesis, (2001).   Google Scholar

[11]

J. D. Carter, C. C. Contreras, Stability of plane-wave solutions of a dissipative generalization of the nonlinear Schrödinger equation,, Physica D, 237 (2008), 3292.  doi: 10.1016/j.physd.2008.07.016.  Google Scholar

[12]

R. S. Mackay and S. Aubry, Proof of existence of breathers for time-reversibler or Hamilotonian network of weakly coupled oscillators,, Nonlinearity, 7 (1994), 1623.  doi: 10.1088/0951-7715/7/6/006.  Google Scholar

[13]

S. J. Lü and Q. S. Lu, Exponential attractor for the 3D Ginburg-Landau type equation,, Nonl. Anal., 67 (2007), 3116.  doi: 10.1016/j.na.2006.10.005.  Google Scholar

[14]

S. J. Lü, Q. S. Lu, Q. G. Meng and Z. Feng, Regularity of attactor for 3D Ginzburg-Landau equation,, Dyn. of Partial Differ. Equ., 6 (2009), 185.   Google Scholar

[15]

S. J. Lü and Q. S. Lu, Fourier spectral approximation to long-time behavior of three dimensional Ginzburg-Landau type equation,, Adv. Comp. Math., 27 (2007), 293.  doi: 10.1007/s10444-005-9004-x.  Google Scholar

[16]

Z. Feng and Q. G. Meng, Exact solution for a two-dimensional kdv-burgers-type equation with nonlinear terms of any order,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 397.   Google Scholar

[17]

Z. Feng and G. Chen, Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth,, Discrete Contin. Dyn. Syst., 24 (2009), 763.  doi: 10.3934/dcds.2009.24.763.  Google Scholar

[18]

M. L. Wang, Exact solutions for a compound KdV-Burgers equation,, Phys. Lett. A, 213 (1996), 279.  doi: 10.1016/0375-9601(96)00103-X.  Google Scholar

[19]

M. L. Wang, Solitary wave solutions for variant Boussinesq equations,, Phys. Lett. A, 199 (1995), 169.  doi: 10.1016/0375-9601(95)00092-H.  Google Scholar

show all references

References:
[1]

J. M. Ghidaglia and B. Héron, Dimension of the attractor associated to the Ginzburg-Landau equation,, Phys. D, 28 (1987), 282.  doi: 10.1016/0167-2789(87)90020-0.  Google Scholar

[2]

C. R. Doering, J. D. Gibbon, D. Holm and B. Nicolaenko, Low-dimensional behavior in the complex Ginzburg-Landau equation,, Nonlinearity, 1 (1988), 279.  doi: 10.1088/0951-7715/1/2/001.  Google Scholar

[3]

K. Promislow, Induced trajectories and approximate inertial manifolds for the Ginzburg-Landau partial differential equation,, Physica D, 41 (1990), 232.  doi: 10.1016/0167-2789(90)90125-9.  Google Scholar

[4]

C. Bu, On the Cauch problem for the 1+2 complex Ginzburg-Landau equation,, J. Austral Math. Soc. Ser. B, 36 (1994), 313.  doi: 10.1017/S0334270000010468.  Google Scholar

[5]

S. J. Lü, The dynamical behavior of the Ginzburg-Landau equation and its Fourier spectral approximation,, Numerical Mathematics, 22 (2000), 1.   Google Scholar

[6]

H. J. Gao and J. Q. Duan, On the initial value problem for the generalized 2D Ginzburg-Landau equation,, J. Math. Anal. Appl., 216 (1997), 536.  doi: 10.1006/jmaa.1997.5682.  Google Scholar

[7]

H. J. Gao and J. Q. Duan, Asymptotics for the generalized two-dimensional Ginzburg-Landau equation,, J. Math. Anal. Appl., 247 (2000), 198.  doi: 10.1006/jmaa.2000.6848.  Google Scholar

[8]

S. J. Lü and Q. S. Lu, A linear discrete scheme for the Ginzburg-Landau equation,, International Journal of Computer Mathematics, 85 (2008), 745.  doi: 10.1080/00207160701253810.  Google Scholar

[9]

B. L. Guo and B. X. Wang, Finite dimensional behavior for the derivative Ginzburg-Landau equation in two spatial dimensions,, Phys. D, 89 (1995), 83.  doi: 10.1016/0167-2789(95)00216-2.  Google Scholar

[10]

J. D. Carter, "Stability and Existence of Traveling Wave Solutions of the Two-dimensional Nonlinear Schrödinger Equation and its Higher-order Generalizations,", Ph.D. Thesis, (2001).   Google Scholar

[11]

J. D. Carter, C. C. Contreras, Stability of plane-wave solutions of a dissipative generalization of the nonlinear Schrödinger equation,, Physica D, 237 (2008), 3292.  doi: 10.1016/j.physd.2008.07.016.  Google Scholar

[12]

R. S. Mackay and S. Aubry, Proof of existence of breathers for time-reversibler or Hamilotonian network of weakly coupled oscillators,, Nonlinearity, 7 (1994), 1623.  doi: 10.1088/0951-7715/7/6/006.  Google Scholar

[13]

S. J. Lü and Q. S. Lu, Exponential attractor for the 3D Ginburg-Landau type equation,, Nonl. Anal., 67 (2007), 3116.  doi: 10.1016/j.na.2006.10.005.  Google Scholar

[14]

S. J. Lü, Q. S. Lu, Q. G. Meng and Z. Feng, Regularity of attactor for 3D Ginzburg-Landau equation,, Dyn. of Partial Differ. Equ., 6 (2009), 185.   Google Scholar

[15]

S. J. Lü and Q. S. Lu, Fourier spectral approximation to long-time behavior of three dimensional Ginzburg-Landau type equation,, Adv. Comp. Math., 27 (2007), 293.  doi: 10.1007/s10444-005-9004-x.  Google Scholar

[16]

Z. Feng and Q. G. Meng, Exact solution for a two-dimensional kdv-burgers-type equation with nonlinear terms of any order,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 397.   Google Scholar

[17]

Z. Feng and G. Chen, Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth,, Discrete Contin. Dyn. Syst., 24 (2009), 763.  doi: 10.3934/dcds.2009.24.763.  Google Scholar

[18]

M. L. Wang, Exact solutions for a compound KdV-Burgers equation,, Phys. Lett. A, 213 (1996), 279.  doi: 10.1016/0375-9601(96)00103-X.  Google Scholar

[19]

M. L. Wang, Solitary wave solutions for variant Boussinesq equations,, Phys. Lett. A, 199 (1995), 169.  doi: 10.1016/0375-9601(95)00092-H.  Google Scholar

[1]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

[2]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[3]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[4]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[5]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[6]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[7]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[8]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[9]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[10]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[11]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[12]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[13]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[14]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[15]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[16]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[17]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[18]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (0)

[Back to Top]