-
Previous Article
Firing control of ink gland motor cells in Aplysia californica
- DCDS-B Home
- This Issue
-
Next Article
Consensus of discrete-time linear multi-agent systems with observer-type protocols
Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation
1. | School of Mathematics and Systems Science & LMIB, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China |
2. | Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China |
3. | School of Mathematics and Systems Science, Beijing University of Aeronautics-Astronautics, Beijing 100191, China, China, China |
References:
[1] |
Phys. D, 28 (1987), 282-304.
doi: 10.1016/0167-2789(87)90020-0. |
[2] |
Nonlinearity, 1 (1988), 279-309.
doi: 10.1088/0951-7715/1/2/001. |
[3] |
Physica D, 41 (1990), 232-252.
doi: 10.1016/0167-2789(90)90125-9. |
[4] |
J. Austral Math. Soc. Ser. B, 36 (1994), 313-324.
doi: 10.1017/S0334270000010468. |
[5] |
Numerical Mathematics, 22 (2000), 1-9. |
[6] |
J. Math. Anal. Appl., 216 (1997), 536-548.
doi: 10.1006/jmaa.1997.5682. |
[7] |
J. Math. Anal. Appl., 247 (2000), 198-216.
doi: 10.1006/jmaa.2000.6848. |
[8] |
International Journal of Computer Mathematics, 85 (2008), 745-758.
doi: 10.1080/00207160701253810. |
[9] |
Phys. D, 89 (1995), 83-99.
doi: 10.1016/0167-2789(95)00216-2. |
[10] |
Ph.D. Thesis, University of Colorado at Boulder, 2001. Google Scholar |
[11] |
Physica D, 237 (2008), 3292-3296.
doi: 10.1016/j.physd.2008.07.016. |
[12] |
Nonlinearity, 7 (1994), 1623-1643.
doi: 10.1088/0951-7715/7/6/006. |
[13] |
Nonl. Anal., 67 (2007), 3116-3135.
doi: 10.1016/j.na.2006.10.005. |
[14] |
Dyn. of Partial Differ. Equ., 6 (2009), 185-201. |
[15] |
Adv. Comp. Math., 27 (2007), 293-318.
doi: 10.1007/s10444-005-9004-x. |
[16] |
Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 397-413. Google Scholar |
[17] |
Discrete Contin. Dyn. Syst., 24 (2009), 763-780.
doi: 10.3934/dcds.2009.24.763. |
[18] |
Phys. Lett. A, 213 (1996), 279-287.
doi: 10.1016/0375-9601(96)00103-X. |
[19] |
Phys. Lett. A, 199 (1995), 169-172.
doi: 10.1016/0375-9601(95)00092-H. |
show all references
References:
[1] |
Phys. D, 28 (1987), 282-304.
doi: 10.1016/0167-2789(87)90020-0. |
[2] |
Nonlinearity, 1 (1988), 279-309.
doi: 10.1088/0951-7715/1/2/001. |
[3] |
Physica D, 41 (1990), 232-252.
doi: 10.1016/0167-2789(90)90125-9. |
[4] |
J. Austral Math. Soc. Ser. B, 36 (1994), 313-324.
doi: 10.1017/S0334270000010468. |
[5] |
Numerical Mathematics, 22 (2000), 1-9. |
[6] |
J. Math. Anal. Appl., 216 (1997), 536-548.
doi: 10.1006/jmaa.1997.5682. |
[7] |
J. Math. Anal. Appl., 247 (2000), 198-216.
doi: 10.1006/jmaa.2000.6848. |
[8] |
International Journal of Computer Mathematics, 85 (2008), 745-758.
doi: 10.1080/00207160701253810. |
[9] |
Phys. D, 89 (1995), 83-99.
doi: 10.1016/0167-2789(95)00216-2. |
[10] |
Ph.D. Thesis, University of Colorado at Boulder, 2001. Google Scholar |
[11] |
Physica D, 237 (2008), 3292-3296.
doi: 10.1016/j.physd.2008.07.016. |
[12] |
Nonlinearity, 7 (1994), 1623-1643.
doi: 10.1088/0951-7715/7/6/006. |
[13] |
Nonl. Anal., 67 (2007), 3116-3135.
doi: 10.1016/j.na.2006.10.005. |
[14] |
Dyn. of Partial Differ. Equ., 6 (2009), 185-201. |
[15] |
Adv. Comp. Math., 27 (2007), 293-318.
doi: 10.1007/s10444-005-9004-x. |
[16] |
Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 397-413. Google Scholar |
[17] |
Discrete Contin. Dyn. Syst., 24 (2009), 763-780.
doi: 10.3934/dcds.2009.24.763. |
[18] |
Phys. Lett. A, 213 (1996), 279-287.
doi: 10.1016/0375-9601(96)00103-X. |
[19] |
Phys. Lett. A, 199 (1995), 169-172.
doi: 10.1016/0375-9601(95)00092-H. |
[1] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[2] |
Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic & Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57 |
[3] |
Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871 |
[4] |
Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311 |
[5] |
Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete & Continuous Dynamical Systems, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825 |
[6] |
Jungho Park. Bifurcation and stability of the generalized complex Ginzburg--Landau equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1237-1253. doi: 10.3934/cpaa.2008.7.1237 |
[7] |
Hongzi Cong, Jianjun Liu, Xiaoping Yuan. Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 579-600. doi: 10.3934/dcdss.2010.3.579 |
[8] |
Michael Stich, Carsten Beta. Standing waves in a complex Ginzburg-Landau equation with time-delay feedback. Conference Publications, 2011, 2011 (Special) : 1329-1334. doi: 10.3934/proc.2011.2011.1329 |
[9] |
N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems, 2007, 19 (4) : 711-736. doi: 10.3934/dcds.2007.19.711 |
[10] |
Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2539-2564. doi: 10.3934/dcds.2017109 |
[11] |
Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129 |
[12] |
Feng Zhou, Chunyou Sun. Dynamics for the complex Ginzburg-Landau equation on non-cylindrical domains I: The diffeomorphism case. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3767-3792. doi: 10.3934/dcdsb.2016120 |
[13] |
Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801 |
[14] |
Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280 |
[15] |
N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476 |
[16] |
Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754 |
[17] |
Satoshi Kosugi, Yoshihisa Morita. Phase pattern in a Ginzburg-Landau model with a discontinuous coefficient in a ring. Discrete & Continuous Dynamical Systems, 2006, 14 (1) : 149-168. doi: 10.3934/dcds.2006.14.149 |
[18] |
N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647 |
[19] |
Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173 |
[20] |
Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]