September  2011, 16(2): 529-545. doi: 10.3934/dcdsb.2011.16.529

Firing control of ink gland motor cells in Aplysia californica

1. 

Department of Dynamics and Control, Beihang University, Beijing 100191, China

2. 

Mathematical and Computational Department, Anhui Huainan Normal University, Anhui, 232007, China

3. 

Center for Neural Science and Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States

Received  April 2010 Revised  November 2010 Published  June 2011

The release of ink in Aplysia californica occurs selectively to long-lasting stimuli. There is a good correspondence between features of the behavior and the firing pattern of the ink gland motor neurons. Indeed, the neurons do not fire for brief inputs and there is a delayed firing for long duration inputs. The biophysical mechanisms for the long delay before firing is due to a transient potassium current which activates rapidly but inactivates more slowly. Based on voltage-clamp experiments, a nine-variable Hodgkin-Huxley-like model for the ink gland motor neurons was developed by Byrne. Here, fast-slow analysis and two-parameter dynamical analysis are used to investigate the contribution of different currents and to predict various firing patterns, including the long latency before firing.
Citation: Xiangying Meng, Quanbao Ji, John Rinzel. Firing control of ink gland motor cells in Aplysia californica. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 529-545. doi: 10.3934/dcdsb.2011.16.529
References:
[1]

P. Dayan and L. F. Abbott, "Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems," MIT Press, 2001.

[2]

Q. S. Lu, H. G. Gu, Z. Q Yang, X. Shi, L. X. Duan and Y. H. Zheng, Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis, Acta Mech. Sin., 24 (2008), 593-628.

[3]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction in nerve, J. Physiol. Lond., 117 (1952), 500-544.

[4]

J. Rinzel, Bursting oscillation in an excitable membrane model, In "Ordinary and Partial Differential Equations" (B. D. sleeman, R. J. Jarvis eds.), Springer, Berlin (1987), 267-281.

[5]

J. H. Byrne, Analysis of ionic conductance mechanisms in motor cells mediating inking behavior in aplysia californica, J. Neurophysiol., 43 (1980), 630-650.

[6]

J. H. Byrne, Quantitative aspects of ionic conductance mechanisms contributing to firing pattern of motor cells mediating inking behavior in aplysia californica, J. Neurophysiol., 43 (1980), 651-668.

[7]

J. H. Byrne, Simulation of the neural activity underlying a short-term modification of inking behavior in aplysis, Brain Res., 204 (1981), 200-203.

[8]

D. Golomb, K. Donner, L. Shacham, D. Shiosberg, Y. Amital, Y. and D. Hansel, Mechanisms of firing patterns in fast-spiking cortical interneurons, PLos Comp. Biol., 3 (2007), 1498-1512.

[9]

J. A. Connor, D. Walter and R. McKown, Neural repetitive firing, Modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons, Biophys. J., 18 (1977), 81-102.

[10]

M. E. Rush and J. Rinzel, The potassium A-current, low firing rates and rebound excitation in hodgin-huxley models, Bulletin of Mathematical Biology, 57 (1995), 899-929.

[11]

J. Rothman and P. B. Manis, The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons, J. Neurophysiol., 89 (2003), 3097-3113.

[12]

P. O. Kanold, and P. B. Manis, A physiologically based model of discharge pattern regulation by transient K currents in cochlear nucleus pyramidal cells, J. Neurophysiol., 85 (2001), 523-538.

[13]

X. Y. Meng, Q. S. Lu and J. Rinzel, Control of firing patterns by two transient potassium currents: leading spike, latency, bistability,, J. Computl. Neurosci., (). 

[14]

J. F. Storm, Temporal integration by a slowly inactivating $K$+ current in hippocampal neurons, Nature, 336 (1988), 379-381.

[15]

P. B. Manis, Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro, J. Neurosci., 10 (1990), 2338-2351.

[16]

W. S. Rhode, P. H. Smith and D. Oertel, Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus, J. Comparative Neurol., 213 (1983), 426-447.

[17]

T. J. Carew and E. R. Kandel, Inking in Aplysia californica. I. Neural circuit of an all-or-none behavioral response, J. Neurophysiol., 40 (1977), 692-707.

[18]

E. Shapiro, J. Koester and J. H. Byrne, Aplysia ink release: locus of selective sensitivity to long-duration stimuli, J. Neurophysiol., 42 (1979), 1223-1232.

show all references

References:
[1]

P. Dayan and L. F. Abbott, "Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems," MIT Press, 2001.

[2]

Q. S. Lu, H. G. Gu, Z. Q Yang, X. Shi, L. X. Duan and Y. H. Zheng, Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis, Acta Mech. Sin., 24 (2008), 593-628.

[3]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction in nerve, J. Physiol. Lond., 117 (1952), 500-544.

[4]

J. Rinzel, Bursting oscillation in an excitable membrane model, In "Ordinary and Partial Differential Equations" (B. D. sleeman, R. J. Jarvis eds.), Springer, Berlin (1987), 267-281.

[5]

J. H. Byrne, Analysis of ionic conductance mechanisms in motor cells mediating inking behavior in aplysia californica, J. Neurophysiol., 43 (1980), 630-650.

[6]

J. H. Byrne, Quantitative aspects of ionic conductance mechanisms contributing to firing pattern of motor cells mediating inking behavior in aplysia californica, J. Neurophysiol., 43 (1980), 651-668.

[7]

J. H. Byrne, Simulation of the neural activity underlying a short-term modification of inking behavior in aplysis, Brain Res., 204 (1981), 200-203.

[8]

D. Golomb, K. Donner, L. Shacham, D. Shiosberg, Y. Amital, Y. and D. Hansel, Mechanisms of firing patterns in fast-spiking cortical interneurons, PLos Comp. Biol., 3 (2007), 1498-1512.

[9]

J. A. Connor, D. Walter and R. McKown, Neural repetitive firing, Modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons, Biophys. J., 18 (1977), 81-102.

[10]

M. E. Rush and J. Rinzel, The potassium A-current, low firing rates and rebound excitation in hodgin-huxley models, Bulletin of Mathematical Biology, 57 (1995), 899-929.

[11]

J. Rothman and P. B. Manis, The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons, J. Neurophysiol., 89 (2003), 3097-3113.

[12]

P. O. Kanold, and P. B. Manis, A physiologically based model of discharge pattern regulation by transient K currents in cochlear nucleus pyramidal cells, J. Neurophysiol., 85 (2001), 523-538.

[13]

X. Y. Meng, Q. S. Lu and J. Rinzel, Control of firing patterns by two transient potassium currents: leading spike, latency, bistability,, J. Computl. Neurosci., (). 

[14]

J. F. Storm, Temporal integration by a slowly inactivating $K$+ current in hippocampal neurons, Nature, 336 (1988), 379-381.

[15]

P. B. Manis, Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro, J. Neurosci., 10 (1990), 2338-2351.

[16]

W. S. Rhode, P. H. Smith and D. Oertel, Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus, J. Comparative Neurol., 213 (1983), 426-447.

[17]

T. J. Carew and E. R. Kandel, Inking in Aplysia californica. I. Neural circuit of an all-or-none behavioral response, J. Neurophysiol., 40 (1977), 692-707.

[18]

E. Shapiro, J. Koester and J. H. Byrne, Aplysia ink release: locus of selective sensitivity to long-duration stimuli, J. Neurophysiol., 42 (1979), 1223-1232.

[1]

Daniele Andreucci, Dario Bellaveglia, Emilio N.M. Cirillo, Silvia Marconi. Effect of intracellular diffusion on current--voltage curves in potassium channels. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1837-1853. doi: 10.3934/dcdsb.2014.19.1837

[2]

Tiejun Li, Tongkai Li, Shaoying Lu. No-oscillation theorem for the transient dynamics of the linear signal transduction pathway and beyond. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2749-2774. doi: 10.3934/dcdsb.2020030

[3]

Lin Wang, James Watmough, Fang Yu. Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions. Mathematical Biosciences & Engineering, 2015, 12 (4) : 699-715. doi: 10.3934/mbe.2015.12.699

[4]

Emile Franc Doungmo Goufo, Melusi Khumalo, Patrick M. Tchepmo Djomegni. Perturbations of Hindmarsh-Rose neuron dynamics by fractional operators: Bifurcation, firing and chaotic bursts. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 663-682. doi: 10.3934/dcdss.2020036

[5]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, 2021, 29 (5) : 2987-3015. doi: 10.3934/era.2021023

[6]

Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165

[7]

Jonathan P. Desi, Evelyn Sander, Thomas Wanner. Complex transient patterns on the disk. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1049-1078. doi: 10.3934/dcds.2006.15.1049

[8]

Josselin Garnier, George Papanicolaou, Tzu-Wei Yang. Mean field model for collective motion bistability. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 851-879. doi: 10.3934/dcdsb.2018210

[9]

Yuri Nechepurenko, Michael Khristichenko, Dmitry Grebennikov, Gennady Bocharov. Bistability analysis of virus infection models with time delays. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2385-2401. doi: 10.3934/dcdss.2020166

[10]

Valentin Duruisseaux, Antony R. Humphries. Bistability, bifurcations and chaos in the Mackey-Glass equation. Journal of Computational Dynamics, 2022  doi: 10.3934/jcd.2022009

[11]

Diogo Poças, Bartosz Protas. Transient growth in stochastic Burgers flows. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2371-2391. doi: 10.3934/dcdsb.2018052

[12]

Philippe Michel, Suman Kumar Tumuluri. A note on a neuron network model with diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3659-3676. doi: 10.3934/dcdsb.2020085

[13]

Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences & Engineering, 2014, 11 (2) : 363-384. doi: 10.3934/mbe.2014.11.363

[14]

Holger Heumann, Ralf Hiptmair, Cecilia Pagliantini. Stabilized Galerkin for transient advection of differential forms. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 185-214. doi: 10.3934/dcdss.2016.9.185

[15]

Iryna Sushko, Anna Agliari, Laura Gardini. Bistability and border-collision bifurcations for a family of unimodal piecewise smooth maps. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 881-897. doi: 10.3934/dcdsb.2005.5.881

[16]

Jie Li, Weinian Zhang. Transition between monostability and bistability of a genetic toggle switch in Escherichia coli. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1871-1894. doi: 10.3934/dcdsb.2020007

[17]

George Dassios, Michalis N. Tsampas. Vector ellipsoidal harmonics and neuronal current decomposition in the brain. Inverse Problems and Imaging, 2009, 3 (2) : 243-257. doi: 10.3934/ipi.2009.3.243

[18]

Stefano Cosenza, Paolo Crucitti, Luigi Fortuna, Mattia Frasca, Manuela La Rosa, Cecilia Stagni, Lisa Usai. From Net Topology to Synchronization in HR Neuron Grids. Mathematical Biosciences & Engineering, 2005, 2 (1) : 53-77. doi: 10.3934/mbe.2005.2.53

[19]

Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188

[20]

Feng Zhang, Alice Lubbe, Qishao Lu, Jianzhong Su. On bursting solutions near chaotic regimes in a neuron model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1363-1383. doi: 10.3934/dcdss.2014.7.1363

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]