-
Previous Article
Border-collision bifurcations in a generalized piecewise linear-power map
- DCDS-B Home
- This Issue
-
Next Article
Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation
Firing control of ink gland motor cells in Aplysia californica
1. | Department of Dynamics and Control, Beihang University, Beijing 100191, China |
2. | Mathematical and Computational Department, Anhui Huainan Normal University, Anhui, 232007, China |
3. | Center for Neural Science and Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States |
References:
[1] |
MIT Press, 2001. |
[2] |
Acta Mech. Sin., 24 (2008), 593-628. Google Scholar |
[3] |
J. Physiol. Lond., 117 (1952), 500-544. Google Scholar |
[4] |
In "Ordinary and Partial Differential Equations" (B. D. sleeman, R. J. Jarvis eds.), Springer, Berlin (1987), 267-281. |
[5] |
J. Neurophysiol., 43 (1980), 630-650. Google Scholar |
[6] |
J. Neurophysiol., 43 (1980), 651-668. Google Scholar |
[7] |
Brain Res., 204 (1981), 200-203. Google Scholar |
[8] |
PLos Comp. Biol., 3 (2007), 1498-1512. |
[9] |
Biophys. J., 18 (1977), 81-102. Google Scholar |
[10] |
Bulletin of Mathematical Biology, 57 (1995), 899-929. Google Scholar |
[11] |
J. Neurophysiol., 89 (2003), 3097-3113. Google Scholar |
[12] |
J. Neurophysiol., 85 (2001), 523-538. Google Scholar |
[13] |
X. Y. Meng, Q. S. Lu and J. Rinzel, Control of firing patterns by two transient potassium currents: leading spike, latency, bistability,, J. Computl. Neurosci., (). Google Scholar |
[14] |
Nature, 336 (1988), 379-381. Google Scholar |
[15] |
J. Neurosci., 10 (1990), 2338-2351. Google Scholar |
[16] |
J. Comparative Neurol., 213 (1983), 426-447. Google Scholar |
[17] |
J. Neurophysiol., 40 (1977), 692-707. Google Scholar |
[18] |
J. Neurophysiol., 42 (1979), 1223-1232. Google Scholar |
show all references
References:
[1] |
MIT Press, 2001. |
[2] |
Acta Mech. Sin., 24 (2008), 593-628. Google Scholar |
[3] |
J. Physiol. Lond., 117 (1952), 500-544. Google Scholar |
[4] |
In "Ordinary and Partial Differential Equations" (B. D. sleeman, R. J. Jarvis eds.), Springer, Berlin (1987), 267-281. |
[5] |
J. Neurophysiol., 43 (1980), 630-650. Google Scholar |
[6] |
J. Neurophysiol., 43 (1980), 651-668. Google Scholar |
[7] |
Brain Res., 204 (1981), 200-203. Google Scholar |
[8] |
PLos Comp. Biol., 3 (2007), 1498-1512. |
[9] |
Biophys. J., 18 (1977), 81-102. Google Scholar |
[10] |
Bulletin of Mathematical Biology, 57 (1995), 899-929. Google Scholar |
[11] |
J. Neurophysiol., 89 (2003), 3097-3113. Google Scholar |
[12] |
J. Neurophysiol., 85 (2001), 523-538. Google Scholar |
[13] |
X. Y. Meng, Q. S. Lu and J. Rinzel, Control of firing patterns by two transient potassium currents: leading spike, latency, bistability,, J. Computl. Neurosci., (). Google Scholar |
[14] |
Nature, 336 (1988), 379-381. Google Scholar |
[15] |
J. Neurosci., 10 (1990), 2338-2351. Google Scholar |
[16] |
J. Comparative Neurol., 213 (1983), 426-447. Google Scholar |
[17] |
J. Neurophysiol., 40 (1977), 692-707. Google Scholar |
[18] |
J. Neurophysiol., 42 (1979), 1223-1232. Google Scholar |
[1] |
Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023 |
[2] |
Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021049 |
[3] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[4] |
Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026 |
[5] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[6] |
Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214 |
[7] |
Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021089 |
[8] |
Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021117 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]