-
Previous Article
Border-collision bifurcations in a generalized piecewise linear-power map
- DCDS-B Home
- This Issue
-
Next Article
Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation
Firing control of ink gland motor cells in Aplysia californica
1. | Department of Dynamics and Control, Beihang University, Beijing 100191, China |
2. | Mathematical and Computational Department, Anhui Huainan Normal University, Anhui, 232007, China |
3. | Center for Neural Science and Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States |
References:
show all references
References:
[1] |
Daniele Andreucci, Dario Bellaveglia, Emilio N.M. Cirillo, Silvia Marconi. Effect of intracellular diffusion on current--voltage curves in potassium channels. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1837-1853. doi: 10.3934/dcdsb.2014.19.1837 |
[2] |
Tiejun Li, Tongkai Li, Shaoying Lu. No-oscillation theorem for the transient dynamics of the linear signal transduction pathway and beyond. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2749-2774. doi: 10.3934/dcdsb.2020030 |
[3] |
Lin Wang, James Watmough, Fang Yu. Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions. Mathematical Biosciences & Engineering, 2015, 12 (4) : 699-715. doi: 10.3934/mbe.2015.12.699 |
[4] |
Emile Franc Doungmo Goufo, Melusi Khumalo, Patrick M. Tchepmo Djomegni. Perturbations of Hindmarsh-Rose neuron dynamics by fractional operators: Bifurcation, firing and chaotic bursts. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 663-682. doi: 10.3934/dcdss.2020036 |
[5] |
Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, 2021, 29 (5) : 2987-3015. doi: 10.3934/era.2021023 |
[6] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[7] |
Jonathan P. Desi, Evelyn Sander, Thomas Wanner. Complex transient patterns on the disk. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1049-1078. doi: 10.3934/dcds.2006.15.1049 |
[8] |
Josselin Garnier, George Papanicolaou, Tzu-Wei Yang. Mean field model for collective motion bistability. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 851-879. doi: 10.3934/dcdsb.2018210 |
[9] |
Yuri Nechepurenko, Michael Khristichenko, Dmitry Grebennikov, Gennady Bocharov. Bistability analysis of virus infection models with time delays. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2385-2401. doi: 10.3934/dcdss.2020166 |
[10] |
Valentin Duruisseaux, Antony R. Humphries. Bistability, bifurcations and chaos in the Mackey-Glass equation. Journal of Computational Dynamics, 2022 doi: 10.3934/jcd.2022009 |
[11] |
Diogo Poças, Bartosz Protas. Transient growth in stochastic Burgers flows. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2371-2391. doi: 10.3934/dcdsb.2018052 |
[12] |
Philippe Michel, Suman Kumar Tumuluri. A note on a neuron network model with diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3659-3676. doi: 10.3934/dcdsb.2020085 |
[13] |
Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences & Engineering, 2014, 11 (2) : 363-384. doi: 10.3934/mbe.2014.11.363 |
[14] |
Holger Heumann, Ralf Hiptmair, Cecilia Pagliantini. Stabilized Galerkin for transient advection of differential forms. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 185-214. doi: 10.3934/dcdss.2016.9.185 |
[15] |
Iryna Sushko, Anna Agliari, Laura Gardini. Bistability and border-collision bifurcations for a family of unimodal piecewise smooth maps. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 881-897. doi: 10.3934/dcdsb.2005.5.881 |
[16] |
Jie Li, Weinian Zhang. Transition between monostability and bistability of a genetic toggle switch in Escherichia coli. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1871-1894. doi: 10.3934/dcdsb.2020007 |
[17] |
George Dassios, Michalis N. Tsampas. Vector ellipsoidal harmonics and neuronal current decomposition in the brain. Inverse Problems and Imaging, 2009, 3 (2) : 243-257. doi: 10.3934/ipi.2009.3.243 |
[18] |
Stefano Cosenza, Paolo Crucitti, Luigi Fortuna, Mattia Frasca, Manuela La Rosa, Cecilia Stagni, Lisa Usai. From Net Topology to Synchronization in HR Neuron Grids. Mathematical Biosciences & Engineering, 2005, 2 (1) : 53-77. doi: 10.3934/mbe.2005.2.53 |
[19] |
Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188 |
[20] |
Feng Zhang, Alice Lubbe, Qishao Lu, Jianzhong Su. On bursting solutions near chaotic regimes in a neuron model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1363-1383. doi: 10.3934/dcdss.2014.7.1363 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]