September  2011, 16(2): 529-545. doi: 10.3934/dcdsb.2011.16.529

Firing control of ink gland motor cells in Aplysia californica

1. 

Department of Dynamics and Control, Beihang University, Beijing 100191, China

2. 

Mathematical and Computational Department, Anhui Huainan Normal University, Anhui, 232007, China

3. 

Center for Neural Science and Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States

Received  April 2010 Revised  November 2010 Published  June 2011

The release of ink in Aplysia californica occurs selectively to long-lasting stimuli. There is a good correspondence between features of the behavior and the firing pattern of the ink gland motor neurons. Indeed, the neurons do not fire for brief inputs and there is a delayed firing for long duration inputs. The biophysical mechanisms for the long delay before firing is due to a transient potassium current which activates rapidly but inactivates more slowly. Based on voltage-clamp experiments, a nine-variable Hodgkin-Huxley-like model for the ink gland motor neurons was developed by Byrne. Here, fast-slow analysis and two-parameter dynamical analysis are used to investigate the contribution of different currents and to predict various firing patterns, including the long latency before firing.
Citation: Xiangying Meng, Quanbao Ji, John Rinzel. Firing control of ink gland motor cells in Aplysia californica. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 529-545. doi: 10.3934/dcdsb.2011.16.529
References:
[1]

MIT Press, 2001.  Google Scholar

[2]

Acta Mech. Sin., 24 (2008), 593-628. Google Scholar

[3]

J. Physiol. Lond., 117 (1952), 500-544. Google Scholar

[4]

In "Ordinary and Partial Differential Equations" (B. D. sleeman, R. J. Jarvis eds.), Springer, Berlin (1987), 267-281.  Google Scholar

[5]

J. Neurophysiol., 43 (1980), 630-650. Google Scholar

[6]

J. Neurophysiol., 43 (1980), 651-668. Google Scholar

[7]

Brain Res., 204 (1981), 200-203. Google Scholar

[8]

PLos Comp. Biol., 3 (2007), 1498-1512.  Google Scholar

[9]

Biophys. J., 18 (1977), 81-102. Google Scholar

[10]

Bulletin of Mathematical Biology, 57 (1995), 899-929. Google Scholar

[11]

J. Neurophysiol., 89 (2003), 3097-3113. Google Scholar

[12]

J. Neurophysiol., 85 (2001), 523-538. Google Scholar

[13]

X. Y. Meng, Q. S. Lu and J. Rinzel, Control of firing patterns by two transient potassium currents: leading spike, latency, bistability,, J. Computl. Neurosci., ().   Google Scholar

[14]

Nature, 336 (1988), 379-381. Google Scholar

[15]

J. Neurosci., 10 (1990), 2338-2351. Google Scholar

[16]

J. Comparative Neurol., 213 (1983), 426-447. Google Scholar

[17]

J. Neurophysiol., 40 (1977), 692-707. Google Scholar

[18]

J. Neurophysiol., 42 (1979), 1223-1232. Google Scholar

show all references

References:
[1]

MIT Press, 2001.  Google Scholar

[2]

Acta Mech. Sin., 24 (2008), 593-628. Google Scholar

[3]

J. Physiol. Lond., 117 (1952), 500-544. Google Scholar

[4]

In "Ordinary and Partial Differential Equations" (B. D. sleeman, R. J. Jarvis eds.), Springer, Berlin (1987), 267-281.  Google Scholar

[5]

J. Neurophysiol., 43 (1980), 630-650. Google Scholar

[6]

J. Neurophysiol., 43 (1980), 651-668. Google Scholar

[7]

Brain Res., 204 (1981), 200-203. Google Scholar

[8]

PLos Comp. Biol., 3 (2007), 1498-1512.  Google Scholar

[9]

Biophys. J., 18 (1977), 81-102. Google Scholar

[10]

Bulletin of Mathematical Biology, 57 (1995), 899-929. Google Scholar

[11]

J. Neurophysiol., 89 (2003), 3097-3113. Google Scholar

[12]

J. Neurophysiol., 85 (2001), 523-538. Google Scholar

[13]

X. Y. Meng, Q. S. Lu and J. Rinzel, Control of firing patterns by two transient potassium currents: leading spike, latency, bistability,, J. Computl. Neurosci., ().   Google Scholar

[14]

Nature, 336 (1988), 379-381. Google Scholar

[15]

J. Neurosci., 10 (1990), 2338-2351. Google Scholar

[16]

J. Comparative Neurol., 213 (1983), 426-447. Google Scholar

[17]

J. Neurophysiol., 40 (1977), 692-707. Google Scholar

[18]

J. Neurophysiol., 42 (1979), 1223-1232. Google Scholar

[1]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[2]

Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021049

[3]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[4]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[5]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[6]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[7]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[8]

Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021117

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]