-
Previous Article
A reliability study of square wave bursting $\beta$-cells with noise
- DCDS-B Home
- This Issue
-
Next Article
Firing control of ink gland motor cells in Aplysia californica
Border-collision bifurcations in a generalized piecewise linear-power map
1. | School of Mechanical and Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China |
2. | Department of Dynamics and Control, Beihang University, Beijing 100191, China |
3. | Indian Institute of Science Education & Research, Kolkata Mohanpur-741252, India |
4. | Department of Computational Science and Mathematics, Guilin University of Electronic Technology, Guilin 541004 |
References:
[1] |
1st edition, IEEE, 2001. Google Scholar |
[2] |
Physica D, 154 (2001), 171-194.
doi: 10.1016/S0167-2789(01)00250-0. |
[3] |
Physica D, 220 (2006), 127-145.
doi: 10.1016/j.physd.2006.07.001. |
[4] |
Journal of Sound and Vibration, 145 (1991), 279-297.
doi: 10.1016/0022-460X(91)90592-8. |
[5] |
Physical Review E, 55 (1997), 266-270.
doi: 10.1103/PhysRevE.55.266. |
[6] |
Physica D, 136 (2000), 280-302.
doi: 10.1016/S0167-2789(99)00161-X. |
[7] |
Physica D, 170 (2002), 170-175. |
[8] |
Nonlinearity, 11 (1998), 858-890. |
[9] |
IEEE Transactions on Circuits and Systems-I, 52 (2005), 366-378.
doi: 10.1109/TCSI.2004.841595. |
[10] |
IEEE Transactions on Circuits and Systems-I, 47 (2000), 1160-1177.
doi: 10.1109/81.873871. |
[11] |
International Journal of Bifurcation and Chaos, 13 (2003), 3341-3352.
doi: 10.1142/S0218127403008533. |
[12] |
Physics Letters A, 337 (2005), 87-92.
doi: 10.1016/j.physleta.2005.01.046. |
[13] |
Discrete and Continuous Dynamical Systems - Series B, 13 (2010), 249-267.
doi: 10.3934/dcdsb.2010.13.249. |
[14] |
Physica D, 57 (1992), 39-57.
doi: 10.1016/0167-2789(92)90087-4. |
[15] |
International Journal of Bifurcation and Chaos, 5 (1995), 189-207.
doi: 10.1142/S0218127495000156. |
[16] |
Chaos, Solitons and Fractals, 10 (1999), 1881-1908. |
[17] |
IEEE Transactions on Circuits and Systems-I, 47 (2000), 389-394.
doi: 10.1109/81.841921. |
[18] |
Physical Review E, 59 (1999), 4052-4061.
doi: 10.1103/PhysRevE.59.4052. |
[19] |
Physical Review E, 49 (1994), 1073-1076.
doi: 10.1103/PhysRevE.49.1073. |
[20] |
Chaos, Solitons and Fractals, 18 (2003), 953-976.
doi: 10.1016/S0960-0779(03)00066-3. |
[21] |
Discrete and Continuous Dynamical Systems - Series B, 14 (2010), 961-976.
doi: 10.3934/dcdsb.2010.14.961. |
[22] |
Physical Review E, 75 (2007), 066205.
doi: 10.1103/PhysRevE.75.066205. |
show all references
References:
[1] |
1st edition, IEEE, 2001. Google Scholar |
[2] |
Physica D, 154 (2001), 171-194.
doi: 10.1016/S0167-2789(01)00250-0. |
[3] |
Physica D, 220 (2006), 127-145.
doi: 10.1016/j.physd.2006.07.001. |
[4] |
Journal of Sound and Vibration, 145 (1991), 279-297.
doi: 10.1016/0022-460X(91)90592-8. |
[5] |
Physical Review E, 55 (1997), 266-270.
doi: 10.1103/PhysRevE.55.266. |
[6] |
Physica D, 136 (2000), 280-302.
doi: 10.1016/S0167-2789(99)00161-X. |
[7] |
Physica D, 170 (2002), 170-175. |
[8] |
Nonlinearity, 11 (1998), 858-890. |
[9] |
IEEE Transactions on Circuits and Systems-I, 52 (2005), 366-378.
doi: 10.1109/TCSI.2004.841595. |
[10] |
IEEE Transactions on Circuits and Systems-I, 47 (2000), 1160-1177.
doi: 10.1109/81.873871. |
[11] |
International Journal of Bifurcation and Chaos, 13 (2003), 3341-3352.
doi: 10.1142/S0218127403008533. |
[12] |
Physics Letters A, 337 (2005), 87-92.
doi: 10.1016/j.physleta.2005.01.046. |
[13] |
Discrete and Continuous Dynamical Systems - Series B, 13 (2010), 249-267.
doi: 10.3934/dcdsb.2010.13.249. |
[14] |
Physica D, 57 (1992), 39-57.
doi: 10.1016/0167-2789(92)90087-4. |
[15] |
International Journal of Bifurcation and Chaos, 5 (1995), 189-207.
doi: 10.1142/S0218127495000156. |
[16] |
Chaos, Solitons and Fractals, 10 (1999), 1881-1908. |
[17] |
IEEE Transactions on Circuits and Systems-I, 47 (2000), 389-394.
doi: 10.1109/81.841921. |
[18] |
Physical Review E, 59 (1999), 4052-4061.
doi: 10.1103/PhysRevE.59.4052. |
[19] |
Physical Review E, 49 (1994), 1073-1076.
doi: 10.1103/PhysRevE.49.1073. |
[20] |
Chaos, Solitons and Fractals, 18 (2003), 953-976.
doi: 10.1016/S0960-0779(03)00066-3. |
[21] |
Discrete and Continuous Dynamical Systems - Series B, 14 (2010), 961-976.
doi: 10.3934/dcdsb.2010.14.961. |
[22] |
Physical Review E, 75 (2007), 066205.
doi: 10.1103/PhysRevE.75.066205. |
[1] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[2] |
Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026 |
[3] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[4] |
Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214 |
[5] |
Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021089 |
[6] |
Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023 |
[7] |
Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021117 |
[8] |
Peter H. van der Kamp, David I. McLaren, G. R. W. Quispel. Generalised Manin transformations and QRT maps. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021009 |
[9] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[10] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[11] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[12] |
Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025 |
[13] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[14] |
Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021067 |
[15] |
Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (I): The sum of indices of equilibria is $ -1 $. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021096 |
[16] |
Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021101 |
[17] |
Tengteng Yu, Xin-Wei Liu, Yu-Hong Dai, Jie Sun. Variable metric proximal stochastic variance reduced gradient methods for nonconvex nonsmooth optimization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021084 |
[18] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[19] |
Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021020 |
[20] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]