September  2011, 16(2): 547-567. doi: 10.3934/dcdsb.2011.16.547

Border-collision bifurcations in a generalized piecewise linear-power map

1. 

School of Mechanical and Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

2. 

Department of Dynamics and Control, Beihang University, Beijing 100191, China

3. 

Indian Institute of Science Education & Research, Kolkata Mohanpur-741252, India

4. 

Department of Computational Science and Mathematics, Guilin University of Electronic Technology, Guilin 541004

Received  February 2010 Revised  October 2010 Published  June 2011

In this paper a class of generalized piecewise smooth maps is studied, which is linear at one side and nonlinear with power dependence at the other side. According to the value of the power in the term $x^z$, the bifurcations occurring in this map are classified into five types: $z>1$, $z=1$, $0<z<1$, $z=0$, and $z<0$. We derive the occurrence conditions of border collision bifurcation and smooth fold and flip bifurcation, especially the codimension-2 bifurcation points describing the interaction between border collision bifurcation and smooth bifurcation. The general results are then applied to the specific cases of the power $z$, and different bifurcation scenarios are shown for individual cases, from which the period-adding scenario is found to be general for any power.
Citation: Zhiying Qin, Jichen Yang, Soumitro Banerjee, Guirong Jiang. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 547-567. doi: 10.3934/dcdsb.2011.16.547
References:
[1]

1st edition, IEEE, 2001. Google Scholar

[2]

Physica D, 154 (2001), 171-194. doi: 10.1016/S0167-2789(01)00250-0.  Google Scholar

[3]

Physica D, 220 (2006), 127-145. doi: 10.1016/j.physd.2006.07.001.  Google Scholar

[4]

Journal of Sound and Vibration, 145 (1991), 279-297. doi: 10.1016/0022-460X(91)90592-8.  Google Scholar

[5]

Physical Review E, 55 (1997), 266-270. doi: 10.1103/PhysRevE.55.266.  Google Scholar

[6]

Physica D, 136 (2000), 280-302. doi: 10.1016/S0167-2789(99)00161-X.  Google Scholar

[7]

Physica D, 170 (2002), 170-175.  Google Scholar

[8]

Nonlinearity, 11 (1998), 858-890.  Google Scholar

[9]

IEEE Transactions on Circuits and Systems-I, 52 (2005), 366-378. doi: 10.1109/TCSI.2004.841595.  Google Scholar

[10]

IEEE Transactions on Circuits and Systems-I, 47 (2000), 1160-1177. doi: 10.1109/81.873871.  Google Scholar

[11]

International Journal of Bifurcation and Chaos, 13 (2003), 3341-3352. doi: 10.1142/S0218127403008533.  Google Scholar

[12]

Physics Letters A, 337 (2005), 87-92. doi: 10.1016/j.physleta.2005.01.046.  Google Scholar

[13]

Discrete and Continuous Dynamical Systems - Series B, 13 (2010), 249-267. doi: 10.3934/dcdsb.2010.13.249.  Google Scholar

[14]

Physica D, 57 (1992), 39-57. doi: 10.1016/0167-2789(92)90087-4.  Google Scholar

[15]

International Journal of Bifurcation and Chaos, 5 (1995), 189-207. doi: 10.1142/S0218127495000156.  Google Scholar

[16]

Chaos, Solitons and Fractals, 10 (1999), 1881-1908.  Google Scholar

[17]

IEEE Transactions on Circuits and Systems-I, 47 (2000), 389-394. doi: 10.1109/81.841921.  Google Scholar

[18]

Physical Review E, 59 (1999), 4052-4061. doi: 10.1103/PhysRevE.59.4052.  Google Scholar

[19]

Physical Review E, 49 (1994), 1073-1076. doi: 10.1103/PhysRevE.49.1073.  Google Scholar

[20]

Chaos, Solitons and Fractals, 18 (2003), 953-976. doi: 10.1016/S0960-0779(03)00066-3.  Google Scholar

[21]

Discrete and Continuous Dynamical Systems - Series B, 14 (2010), 961-976. doi: 10.3934/dcdsb.2010.14.961.  Google Scholar

[22]

Physical Review E, 75 (2007), 066205. doi: 10.1103/PhysRevE.75.066205.  Google Scholar

show all references

References:
[1]

1st edition, IEEE, 2001. Google Scholar

[2]

Physica D, 154 (2001), 171-194. doi: 10.1016/S0167-2789(01)00250-0.  Google Scholar

[3]

Physica D, 220 (2006), 127-145. doi: 10.1016/j.physd.2006.07.001.  Google Scholar

[4]

Journal of Sound and Vibration, 145 (1991), 279-297. doi: 10.1016/0022-460X(91)90592-8.  Google Scholar

[5]

Physical Review E, 55 (1997), 266-270. doi: 10.1103/PhysRevE.55.266.  Google Scholar

[6]

Physica D, 136 (2000), 280-302. doi: 10.1016/S0167-2789(99)00161-X.  Google Scholar

[7]

Physica D, 170 (2002), 170-175.  Google Scholar

[8]

Nonlinearity, 11 (1998), 858-890.  Google Scholar

[9]

IEEE Transactions on Circuits and Systems-I, 52 (2005), 366-378. doi: 10.1109/TCSI.2004.841595.  Google Scholar

[10]

IEEE Transactions on Circuits and Systems-I, 47 (2000), 1160-1177. doi: 10.1109/81.873871.  Google Scholar

[11]

International Journal of Bifurcation and Chaos, 13 (2003), 3341-3352. doi: 10.1142/S0218127403008533.  Google Scholar

[12]

Physics Letters A, 337 (2005), 87-92. doi: 10.1016/j.physleta.2005.01.046.  Google Scholar

[13]

Discrete and Continuous Dynamical Systems - Series B, 13 (2010), 249-267. doi: 10.3934/dcdsb.2010.13.249.  Google Scholar

[14]

Physica D, 57 (1992), 39-57. doi: 10.1016/0167-2789(92)90087-4.  Google Scholar

[15]

International Journal of Bifurcation and Chaos, 5 (1995), 189-207. doi: 10.1142/S0218127495000156.  Google Scholar

[16]

Chaos, Solitons and Fractals, 10 (1999), 1881-1908.  Google Scholar

[17]

IEEE Transactions on Circuits and Systems-I, 47 (2000), 389-394. doi: 10.1109/81.841921.  Google Scholar

[18]

Physical Review E, 59 (1999), 4052-4061. doi: 10.1103/PhysRevE.59.4052.  Google Scholar

[19]

Physical Review E, 49 (1994), 1073-1076. doi: 10.1103/PhysRevE.49.1073.  Google Scholar

[20]

Chaos, Solitons and Fractals, 18 (2003), 953-976. doi: 10.1016/S0960-0779(03)00066-3.  Google Scholar

[21]

Discrete and Continuous Dynamical Systems - Series B, 14 (2010), 961-976. doi: 10.3934/dcdsb.2010.14.961.  Google Scholar

[22]

Physical Review E, 75 (2007), 066205. doi: 10.1103/PhysRevE.75.066205.  Google Scholar

[1]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[2]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[3]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[4]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[5]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[6]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[7]

Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021117

[8]

Peter H. van der Kamp, David I. McLaren, G. R. W. Quispel. Generalised Manin transformations and QRT maps. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021009

[9]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[10]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[11]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[12]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[13]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[14]

Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021067

[15]

Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (I): The sum of indices of equilibria is $ -1 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021096

[16]

Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021101

[17]

Tengteng Yu, Xin-Wei Liu, Yu-Hong Dai, Jie Sun. Variable metric proximal stochastic variance reduced gradient methods for nonconvex nonsmooth optimization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021084

[18]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[19]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[20]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (10)

[Back to Top]