July  2011, 16(1): 57-71. doi: 10.3934/dcdsb.2011.16.57

Finite to infinite steady state solutions, bifurcations of an integro-differential equation

1. 

Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh

2. 

Department of Mathematics and Maxwell Institute, Heriot-Watt University, Edinburgh, United Kingdom, United Kingdom

3. 

Department of Mathematics, University of Strathclyde, Glasgow, United Kingdom

Received  April 2010 Revised  November 2010 Published  April 2011

We consider a bistable integral equation which governs the stationary solutions of a convolution model of solid--solid phase transitions on a circle. We study the bifurcations of the set of the stationary solutions as the diffusion coefficient is increased to examine the transition from an uncountably infinite number of steady states to three for the continuum limit of the semi--discretised system. We show how the symmetry of the problem is responsible for the generation and stabilisation of equilibria and comment on the puzzling connection between continuity and stability that exists in this problem.
Citation: Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57
References:
[1]

P. Bates and F. Chen, Periodic travelling waves for a nonlocal integro-differential model,, Electronic Journal of Differential Equations, 1999 (1999), 1.   Google Scholar

[2]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions,, Arch. Ration. Mech. Anal., 150 (1999), 281.  doi: 10.1007/s002050050189.  Google Scholar

[3]

P. W. Bates, P. C. Fife, X. Ren and X. Wang, Travelling waves in a convolution model for phase transitions,, Archive for Rational Mechanics and Analysis, 138 (1997), 105.  doi: 10.1007/s002050050037.  Google Scholar

[4]

S. K. Bhowmik, "Numerical Approximation of a Nonlinear Partial Integro-Differential Equation,", PhD thesis, (2008).   Google Scholar

[5]

F. Chen, Uniform stability of multidimensional travelling waves for the nonlocal Allen-Cahn equation,, Fifth Mississippi State Conference on Differential Equations and Computational Simulations, 10 (2003), 109.   Google Scholar

[6]

A. Chmaj and X. Ren, The nonlocal bistable equation: stationary solutions on a bounded interval,, Electr. J. Diff.eqns., 2002 (2002), 1.   Google Scholar

[7]

J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations,, Nonlinear Analysis, 60 (2005), 797.  doi: 10.1016/j.na.2003.10.030.  Google Scholar

[8]

K. Deng, On a nonlocal reaction-diffusion population model,, DCDS series B., 9 (2008), 65.   Google Scholar

[9]

D. B. Duncan, M. Grinfeld and I. Stoleriu, Coarsening in an integro-differential model of phase transitions,, Euro. Journal of Applied Mathematics, 11 (2000), 511.  doi: 10.1017/S0956792500004319.  Google Scholar

[10]

P. C. Fife, Models of phase separation and their mathematics,, Electronic Journal of Differential Equations, 48 (2000), 1.   Google Scholar

[11]

P. C. Fife, Well-posedness issues for models of phase transitions with weak interaction,, Nonlinearity, 14 (2001), 221.  doi: 10.1088/0951-7715/14/2/303.  Google Scholar

[12]

J. Garcia Melian and J. D. Rossi, Logistic equation with refuge and nonlocal diffusion,, Communications on Pure and Applied Analysis, 8 (2009), 2037.  doi: 10.3934/cpaa.2009.8.2037.  Google Scholar

[13]

M. Golubitsky, I. N. Stewart and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory: Vol. II,", Springer-Verlag, (1988).   Google Scholar

[14]

W. J. F. Govaerts, Numerical bifurcation analysis for {ODEs},, Journal of Computational and Applied Mathematics, 125 (2000), 57.  doi: 10.1016/S0377-0427(00)00458-1.  Google Scholar

[15]

W. J. F. Govaerts, "Numerical Methods for Bifurcations of Dynamical Equilibria,", SIAM, (2000).  doi: 10.1137/1.9780898719543.  Google Scholar

[16]

M. Grinfeld, W. Hines, V. Hutson, K. Mischaikow and G. Vickers, Non-local dispersal,, Differential and Integral Equations, 11 (2005), 1299.   Google Scholar

[17]

M. Grinfeld and I. Stoleriu, Truncated gradient flows of the van der Waals free energy,, Electron. J. Diff. Eqns., 2006 (2006), 1.   Google Scholar

[18]

T. Hartley and T. Wanner, A semi-implicit spectral method for stochastic nonlocal phase-field models,, DCDS, 25 (2009), 399.  doi: 10.3934/dcds.2009.25.399.  Google Scholar

[19]

R. B. Hoyle, "Pattern Formation: An Introduction to Methods,", Cambridge University Press, (2006).  doi: 10.1017/CBO9780511616051.  Google Scholar

[20]

V. Hutson and M. Grinfeld, Non-local dispersal and bistability,, Euro. Journal of Applied Mathematics, 17 (2006), 211.  doi: 10.1017/S0956792506006462.  Google Scholar

[21]

J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new,, Mathematical Biosciences, 184 (2003), 201.  doi: 10.1016/S0025-5564(03)00041-5.  Google Scholar

[22]

Z. Mei, "Numerical Bifurcation Analysis for Reaction-Diffusion Equations,", Springer, (2000).   Google Scholar

[23]

K. E. Morrison, Spectral approximation of multiplication operators,, New York Journal of Mathematics, 1 (1995), 75.   Google Scholar

[24]

J. D. Rossi and A. F. Pazoto, Asymptotic behaviour for a semilinear nonlocal equation,, Asymptotic Analysis, 52 (2007), 143.   Google Scholar

[25]

H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons,, Biophys. J, 12 (1972), 1.  doi: 10.1016/S0006-3495(72)86068-5.  Google Scholar

show all references

References:
[1]

P. Bates and F. Chen, Periodic travelling waves for a nonlocal integro-differential model,, Electronic Journal of Differential Equations, 1999 (1999), 1.   Google Scholar

[2]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions,, Arch. Ration. Mech. Anal., 150 (1999), 281.  doi: 10.1007/s002050050189.  Google Scholar

[3]

P. W. Bates, P. C. Fife, X. Ren and X. Wang, Travelling waves in a convolution model for phase transitions,, Archive for Rational Mechanics and Analysis, 138 (1997), 105.  doi: 10.1007/s002050050037.  Google Scholar

[4]

S. K. Bhowmik, "Numerical Approximation of a Nonlinear Partial Integro-Differential Equation,", PhD thesis, (2008).   Google Scholar

[5]

F. Chen, Uniform stability of multidimensional travelling waves for the nonlocal Allen-Cahn equation,, Fifth Mississippi State Conference on Differential Equations and Computational Simulations, 10 (2003), 109.   Google Scholar

[6]

A. Chmaj and X. Ren, The nonlocal bistable equation: stationary solutions on a bounded interval,, Electr. J. Diff.eqns., 2002 (2002), 1.   Google Scholar

[7]

J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations,, Nonlinear Analysis, 60 (2005), 797.  doi: 10.1016/j.na.2003.10.030.  Google Scholar

[8]

K. Deng, On a nonlocal reaction-diffusion population model,, DCDS series B., 9 (2008), 65.   Google Scholar

[9]

D. B. Duncan, M. Grinfeld and I. Stoleriu, Coarsening in an integro-differential model of phase transitions,, Euro. Journal of Applied Mathematics, 11 (2000), 511.  doi: 10.1017/S0956792500004319.  Google Scholar

[10]

P. C. Fife, Models of phase separation and their mathematics,, Electronic Journal of Differential Equations, 48 (2000), 1.   Google Scholar

[11]

P. C. Fife, Well-posedness issues for models of phase transitions with weak interaction,, Nonlinearity, 14 (2001), 221.  doi: 10.1088/0951-7715/14/2/303.  Google Scholar

[12]

J. Garcia Melian and J. D. Rossi, Logistic equation with refuge and nonlocal diffusion,, Communications on Pure and Applied Analysis, 8 (2009), 2037.  doi: 10.3934/cpaa.2009.8.2037.  Google Scholar

[13]

M. Golubitsky, I. N. Stewart and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory: Vol. II,", Springer-Verlag, (1988).   Google Scholar

[14]

W. J. F. Govaerts, Numerical bifurcation analysis for {ODEs},, Journal of Computational and Applied Mathematics, 125 (2000), 57.  doi: 10.1016/S0377-0427(00)00458-1.  Google Scholar

[15]

W. J. F. Govaerts, "Numerical Methods for Bifurcations of Dynamical Equilibria,", SIAM, (2000).  doi: 10.1137/1.9780898719543.  Google Scholar

[16]

M. Grinfeld, W. Hines, V. Hutson, K. Mischaikow and G. Vickers, Non-local dispersal,, Differential and Integral Equations, 11 (2005), 1299.   Google Scholar

[17]

M. Grinfeld and I. Stoleriu, Truncated gradient flows of the van der Waals free energy,, Electron. J. Diff. Eqns., 2006 (2006), 1.   Google Scholar

[18]

T. Hartley and T. Wanner, A semi-implicit spectral method for stochastic nonlocal phase-field models,, DCDS, 25 (2009), 399.  doi: 10.3934/dcds.2009.25.399.  Google Scholar

[19]

R. B. Hoyle, "Pattern Formation: An Introduction to Methods,", Cambridge University Press, (2006).  doi: 10.1017/CBO9780511616051.  Google Scholar

[20]

V. Hutson and M. Grinfeld, Non-local dispersal and bistability,, Euro. Journal of Applied Mathematics, 17 (2006), 211.  doi: 10.1017/S0956792506006462.  Google Scholar

[21]

J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new,, Mathematical Biosciences, 184 (2003), 201.  doi: 10.1016/S0025-5564(03)00041-5.  Google Scholar

[22]

Z. Mei, "Numerical Bifurcation Analysis for Reaction-Diffusion Equations,", Springer, (2000).   Google Scholar

[23]

K. E. Morrison, Spectral approximation of multiplication operators,, New York Journal of Mathematics, 1 (1995), 75.   Google Scholar

[24]

J. D. Rossi and A. F. Pazoto, Asymptotic behaviour for a semilinear nonlocal equation,, Asymptotic Analysis, 52 (2007), 143.   Google Scholar

[25]

H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons,, Biophys. J, 12 (1972), 1.  doi: 10.1016/S0006-3495(72)86068-5.  Google Scholar

[1]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[2]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[3]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[8]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[9]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[10]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[11]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[12]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[13]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[14]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[15]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[16]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[17]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[18]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[19]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[20]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (4)

[Back to Top]