September  2011, 16(2): 607-621. doi: 10.3934/dcdsb.2011.16.607

Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking

1. 

Department of Dynamics and Control, Beihang University, Beijing 100191, China

2. 

School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. 

Department of Electronic Engineering, City University of Hong Kong, Hong Kong

Received  December 2009 Revised  September 2010 Published  June 2011

We study the evolution of spatiotemporal dynamics and synchronization transition on small-world Hodgkin-Huxley (HH) neuronal networks that are characterized with channel noises, ion channel blocking and information transmission delays. In particular, we examine the effects of delay on spatiotemporal dynamics over neuronal networks when channel blocking of potassium or sodium is involved. We show that small delays can detriment synchronization in the network due to a dynamic clustering anti-phase synchronization transition. We also show that regions of irregular and regular wave propagations related to synchronization transitions appear intermittently as the delay increases, and the delay-induced synchronization transitions manifest as well-expressed minima in the measure for spatial synchrony. In addition, we show that the fraction of sodium or potassium channels can play a key role in dynamics of neuronal networks. Furthermore, We found that the fraction of sodium and potassium channels has different impacts on spatiotemporal dynamics of neuronal networks, respectively. Our results thus provide insights that could facilitate the understanding of the joint impact of ion channel blocking and information transmission delays on the dynamical behaviors of realistic neuronal networks.
Citation: Qingyun Wang, Xia Shi, Guanrong Chen. Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 607-621. doi: 10.3934/dcdsb.2011.16.607
References:
[1]

PNAS, 51 (2006), 19219-19220. doi: 10.1073/pnas.0609523103.  Google Scholar

[2]

Oxford Univ. Press, New York, 1995.  Google Scholar

[3]

Oxford Univ. Press, New York, 2003.  Google Scholar

[4]

Nature, 10 (2009), 186-198.  Google Scholar

[5]

Trends Cogn. Sci., 8 (2004), 418-425. doi: 10.1016/j.tics.2004.07.008.  Google Scholar

[6]

Trends Cogn. Sci., 12 (2006), 512-523.  Google Scholar

[7]

Clin. Neurophysiol., 118 (2007), 2317-2331. doi: 10.1016/j.clinph.2007.08.010.  Google Scholar

[8]

Phys. Usp., 39 (1996), 337-362. doi: 10.1070/PU1996v039n04ABEH000141.  Google Scholar

[9]

Reviews of Modern Physics, 78 (2006), 1213-1265. doi: 10.1103/RevModPhys.78.1213.  Google Scholar

[10]

Computational Methods in Neural Modeling, 2686 (2003), 46-53. doi: 10.1007/3-540-44868-3_7.  Google Scholar

[11]

Phys. Rev. Lett., 87 (2001), 098101. doi: 10.1103/PhysRevLett.87.098101.  Google Scholar

[12]

Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743.  Google Scholar

[13]

New J. Phys, 9 (2007), 1-11. doi: 10.1088/1367-2630/9/10/383.  Google Scholar

[14]

Phys. Lett. A, 298 (2002), 319-324. doi: 10.1016/S0375-9601(02)00575-3.  Google Scholar

[15]

Europhys. Lett., 83 (2008), 50008. doi: 10.1209/0295-5075/83/50008.  Google Scholar

[16]

Chaos, 16 (2006), 013113. doi: 10.1063/1.2148387.  Google Scholar

[17]

Physica A, 374 (2007), 869-878. doi: 10.1016/j.physa.2006.08.062.  Google Scholar

[18]

Phys. Rev. Lett., 97 (2006), 238103. doi: 10.1103/PhysRevLett.97.238103.  Google Scholar

[19]

3rd edition, Sinauer Associates, Sundrland, MA, 2001.  Google Scholar

[20]

Physica A, 389 (2010), 349-357. doi: 10.1016/j.physa.2009.09.033.  Google Scholar

[21]

Europhys. Lett., 86 (2009), 40008. doi: 10.1209/0295-5075/86/40008.  Google Scholar

[22]

Chin. Phys. Lett., 3 (2005), 543-546.  Google Scholar

[23]

Phys. Rev. E, 71 (2005), 061904. doi: 10.1103/PhysRevE.71.061904.  Google Scholar

[24]

Nonlinear Biomedical Physics, 1 (2007), 1-9. doi: 10.1186/1753-4631-1-2.  Google Scholar

[25]

Discrete and Continuous Dynamical Systems-Series B, 9 (2008), 397-413.  Google Scholar

[26]

Discrete and Continuous Dynamical Systems-Series B, 14 (2010), 275-288.  Google Scholar

[27]

Phys. Rev. E, 80 (2009), 026206. doi: 10.1103/PhysRevE.80.026206.  Google Scholar

[28]

J Physiol, 117 (1952), 500-544.  Google Scholar

[29]

Phys. Rev. E., 69 (2004), 011909. doi: 10.1103/PhysRevE.69.011909.  Google Scholar

[30]

Chem. Phys. Chem., 6 (2005), 1042-1047. doi: 10.1002/cphc.200500051.  Google Scholar

[31]

Phys. Rev. E, 73 (2006), 046137. doi: 10.1103/PhysRevE.73.046137.  Google Scholar

[32]

Phys. Rev. E., 65 (2001), 016209. doi: 10.1103/PhysRevE.65.016209.  Google Scholar

show all references

References:
[1]

PNAS, 51 (2006), 19219-19220. doi: 10.1073/pnas.0609523103.  Google Scholar

[2]

Oxford Univ. Press, New York, 1995.  Google Scholar

[3]

Oxford Univ. Press, New York, 2003.  Google Scholar

[4]

Nature, 10 (2009), 186-198.  Google Scholar

[5]

Trends Cogn. Sci., 8 (2004), 418-425. doi: 10.1016/j.tics.2004.07.008.  Google Scholar

[6]

Trends Cogn. Sci., 12 (2006), 512-523.  Google Scholar

[7]

Clin. Neurophysiol., 118 (2007), 2317-2331. doi: 10.1016/j.clinph.2007.08.010.  Google Scholar

[8]

Phys. Usp., 39 (1996), 337-362. doi: 10.1070/PU1996v039n04ABEH000141.  Google Scholar

[9]

Reviews of Modern Physics, 78 (2006), 1213-1265. doi: 10.1103/RevModPhys.78.1213.  Google Scholar

[10]

Computational Methods in Neural Modeling, 2686 (2003), 46-53. doi: 10.1007/3-540-44868-3_7.  Google Scholar

[11]

Phys. Rev. Lett., 87 (2001), 098101. doi: 10.1103/PhysRevLett.87.098101.  Google Scholar

[12]

Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743.  Google Scholar

[13]

New J. Phys, 9 (2007), 1-11. doi: 10.1088/1367-2630/9/10/383.  Google Scholar

[14]

Phys. Lett. A, 298 (2002), 319-324. doi: 10.1016/S0375-9601(02)00575-3.  Google Scholar

[15]

Europhys. Lett., 83 (2008), 50008. doi: 10.1209/0295-5075/83/50008.  Google Scholar

[16]

Chaos, 16 (2006), 013113. doi: 10.1063/1.2148387.  Google Scholar

[17]

Physica A, 374 (2007), 869-878. doi: 10.1016/j.physa.2006.08.062.  Google Scholar

[18]

Phys. Rev. Lett., 97 (2006), 238103. doi: 10.1103/PhysRevLett.97.238103.  Google Scholar

[19]

3rd edition, Sinauer Associates, Sundrland, MA, 2001.  Google Scholar

[20]

Physica A, 389 (2010), 349-357. doi: 10.1016/j.physa.2009.09.033.  Google Scholar

[21]

Europhys. Lett., 86 (2009), 40008. doi: 10.1209/0295-5075/86/40008.  Google Scholar

[22]

Chin. Phys. Lett., 3 (2005), 543-546.  Google Scholar

[23]

Phys. Rev. E, 71 (2005), 061904. doi: 10.1103/PhysRevE.71.061904.  Google Scholar

[24]

Nonlinear Biomedical Physics, 1 (2007), 1-9. doi: 10.1186/1753-4631-1-2.  Google Scholar

[25]

Discrete and Continuous Dynamical Systems-Series B, 9 (2008), 397-413.  Google Scholar

[26]

Discrete and Continuous Dynamical Systems-Series B, 14 (2010), 275-288.  Google Scholar

[27]

Phys. Rev. E, 80 (2009), 026206. doi: 10.1103/PhysRevE.80.026206.  Google Scholar

[28]

J Physiol, 117 (1952), 500-544.  Google Scholar

[29]

Phys. Rev. E., 69 (2004), 011909. doi: 10.1103/PhysRevE.69.011909.  Google Scholar

[30]

Chem. Phys. Chem., 6 (2005), 1042-1047. doi: 10.1002/cphc.200500051.  Google Scholar

[31]

Phys. Rev. E, 73 (2006), 046137. doi: 10.1103/PhysRevE.73.046137.  Google Scholar

[32]

Phys. Rev. E., 65 (2001), 016209. doi: 10.1103/PhysRevE.65.016209.  Google Scholar

[1]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[2]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[3]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[4]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[5]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[6]

Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021079

[7]

Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491

[8]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[9]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[10]

Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2020159

[11]

Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021016

[12]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[13]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[14]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[15]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021027

[16]

Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Jamille L.L. Almeida. Dynamics of piezoelectric beams with magnetic effects and delay term. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021015

[17]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[18]

Saeed Assani, Muhammad Salman Mansoor, Faisal Asghar, Yongjun Li, Feng Yang. Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: A parallel DEA network with shared inputs. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021053

[19]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[20]

Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]