-
Previous Article
Positive solutions of $p$-Laplacian equations with nonlinear boundary condition
- DCDS-B Home
- This Issue
-
Next Article
A constraint-stabilized method for multibody dynamics with friction-affected translational joints based on HLCP
Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking
1. | Department of Dynamics and Control, Beihang University, Beijing 100191, China |
2. | School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China |
3. | Department of Electronic Engineering, City University of Hong Kong, Hong Kong |
References:
[1] |
PNAS, 51 (2006), 19219-19220.
doi: 10.1073/pnas.0609523103. |
[2] |
Oxford Univ. Press, New York, 1995. |
[3] |
Oxford Univ. Press, New York, 2003. |
[4] |
Nature, 10 (2009), 186-198. |
[5] |
Trends Cogn. Sci., 8 (2004), 418-425.
doi: 10.1016/j.tics.2004.07.008. |
[6] |
Trends Cogn. Sci., 12 (2006), 512-523. |
[7] |
Clin. Neurophysiol., 118 (2007), 2317-2331.
doi: 10.1016/j.clinph.2007.08.010. |
[8] |
Phys. Usp., 39 (1996), 337-362.
doi: 10.1070/PU1996v039n04ABEH000141. |
[9] |
Reviews of Modern Physics, 78 (2006), 1213-1265.
doi: 10.1103/RevModPhys.78.1213. |
[10] |
Computational Methods in Neural Modeling, 2686 (2003), 46-53.
doi: 10.1007/3-540-44868-3_7. |
[11] |
Phys. Rev. Lett., 87 (2001), 098101.
doi: 10.1103/PhysRevLett.87.098101. |
[12] |
Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511755743. |
[13] |
New J. Phys, 9 (2007), 1-11.
doi: 10.1088/1367-2630/9/10/383. |
[14] |
Phys. Lett. A, 298 (2002), 319-324.
doi: 10.1016/S0375-9601(02)00575-3. |
[15] |
Europhys. Lett., 83 (2008), 50008.
doi: 10.1209/0295-5075/83/50008. |
[16] |
Chaos, 16 (2006), 013113.
doi: 10.1063/1.2148387. |
[17] |
Physica A, 374 (2007), 869-878.
doi: 10.1016/j.physa.2006.08.062. |
[18] |
Phys. Rev. Lett., 97 (2006), 238103.
doi: 10.1103/PhysRevLett.97.238103. |
[19] |
3rd edition, Sinauer Associates, Sundrland, MA, 2001. |
[20] |
Physica A, 389 (2010), 349-357.
doi: 10.1016/j.physa.2009.09.033. |
[21] |
Europhys. Lett., 86 (2009), 40008.
doi: 10.1209/0295-5075/86/40008. |
[22] |
Chin. Phys. Lett., 3 (2005), 543-546. |
[23] |
Phys. Rev. E, 71 (2005), 061904.
doi: 10.1103/PhysRevE.71.061904. |
[24] |
Nonlinear Biomedical Physics, 1 (2007), 1-9.
doi: 10.1186/1753-4631-1-2. |
[25] |
Discrete and Continuous Dynamical Systems-Series B, 9 (2008), 397-413. |
[26] |
Discrete and Continuous Dynamical Systems-Series B, 14 (2010), 275-288. |
[27] |
Phys. Rev. E, 80 (2009), 026206.
doi: 10.1103/PhysRevE.80.026206. |
[28] |
J Physiol, 117 (1952), 500-544. |
[29] |
Phys. Rev. E., 69 (2004), 011909.
doi: 10.1103/PhysRevE.69.011909. |
[30] |
Chem. Phys. Chem., 6 (2005), 1042-1047.
doi: 10.1002/cphc.200500051. |
[31] |
Phys. Rev. E, 73 (2006), 046137.
doi: 10.1103/PhysRevE.73.046137. |
[32] |
Phys. Rev. E., 65 (2001), 016209.
doi: 10.1103/PhysRevE.65.016209. |
show all references
References:
[1] |
PNAS, 51 (2006), 19219-19220.
doi: 10.1073/pnas.0609523103. |
[2] |
Oxford Univ. Press, New York, 1995. |
[3] |
Oxford Univ. Press, New York, 2003. |
[4] |
Nature, 10 (2009), 186-198. |
[5] |
Trends Cogn. Sci., 8 (2004), 418-425.
doi: 10.1016/j.tics.2004.07.008. |
[6] |
Trends Cogn. Sci., 12 (2006), 512-523. |
[7] |
Clin. Neurophysiol., 118 (2007), 2317-2331.
doi: 10.1016/j.clinph.2007.08.010. |
[8] |
Phys. Usp., 39 (1996), 337-362.
doi: 10.1070/PU1996v039n04ABEH000141. |
[9] |
Reviews of Modern Physics, 78 (2006), 1213-1265.
doi: 10.1103/RevModPhys.78.1213. |
[10] |
Computational Methods in Neural Modeling, 2686 (2003), 46-53.
doi: 10.1007/3-540-44868-3_7. |
[11] |
Phys. Rev. Lett., 87 (2001), 098101.
doi: 10.1103/PhysRevLett.87.098101. |
[12] |
Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511755743. |
[13] |
New J. Phys, 9 (2007), 1-11.
doi: 10.1088/1367-2630/9/10/383. |
[14] |
Phys. Lett. A, 298 (2002), 319-324.
doi: 10.1016/S0375-9601(02)00575-3. |
[15] |
Europhys. Lett., 83 (2008), 50008.
doi: 10.1209/0295-5075/83/50008. |
[16] |
Chaos, 16 (2006), 013113.
doi: 10.1063/1.2148387. |
[17] |
Physica A, 374 (2007), 869-878.
doi: 10.1016/j.physa.2006.08.062. |
[18] |
Phys. Rev. Lett., 97 (2006), 238103.
doi: 10.1103/PhysRevLett.97.238103. |
[19] |
3rd edition, Sinauer Associates, Sundrland, MA, 2001. |
[20] |
Physica A, 389 (2010), 349-357.
doi: 10.1016/j.physa.2009.09.033. |
[21] |
Europhys. Lett., 86 (2009), 40008.
doi: 10.1209/0295-5075/86/40008. |
[22] |
Chin. Phys. Lett., 3 (2005), 543-546. |
[23] |
Phys. Rev. E, 71 (2005), 061904.
doi: 10.1103/PhysRevE.71.061904. |
[24] |
Nonlinear Biomedical Physics, 1 (2007), 1-9.
doi: 10.1186/1753-4631-1-2. |
[25] |
Discrete and Continuous Dynamical Systems-Series B, 9 (2008), 397-413. |
[26] |
Discrete and Continuous Dynamical Systems-Series B, 14 (2010), 275-288. |
[27] |
Phys. Rev. E, 80 (2009), 026206.
doi: 10.1103/PhysRevE.80.026206. |
[28] |
J Physiol, 117 (1952), 500-544. |
[29] |
Phys. Rev. E., 69 (2004), 011909.
doi: 10.1103/PhysRevE.69.011909. |
[30] |
Chem. Phys. Chem., 6 (2005), 1042-1047.
doi: 10.1002/cphc.200500051. |
[31] |
Phys. Rev. E, 73 (2006), 046137.
doi: 10.1103/PhysRevE.73.046137. |
[32] |
Phys. Rev. E., 65 (2001), 016209.
doi: 10.1103/PhysRevE.65.016209. |
[1] |
Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221 |
[2] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[3] |
Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022 |
[4] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[5] |
Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021076 |
[6] |
Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021079 |
[7] |
Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491 |
[8] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[9] |
Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021009 |
[10] |
Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2020159 |
[11] |
Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021016 |
[12] |
Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046 |
[13] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[14] |
Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226 |
[15] |
Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021027 |
[16] |
Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Jamille L.L. Almeida. Dynamics of piezoelectric beams with magnetic effects and delay term. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021015 |
[17] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[18] |
Saeed Assani, Muhammad Salman Mansoor, Faisal Asghar, Yongjun Li, Feng Yang. Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: A parallel DEA network with shared inputs. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021053 |
[19] |
Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 |
[20] |
Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]