• Previous Article
    Bifurcation analysis of bursting solutions of two Hindmarsh-Rose neurons with joint electrical and synaptic coupling
  • DCDS-B Home
  • This Issue
  • Next Article
    Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking
September  2011, 16(2): 623-636. doi: 10.3934/dcdsb.2011.16.623

Positive solutions of $p$-Laplacian equations with nonlinear boundary condition

1. 

Institute of Mathematics, School of Mathematics Science, Nanjing Normal University, Jiangsu Nanjing 210046, China, China

2. 

School of Mathematics and Physics, Xuzhou Institute of Technology, Xuzhou, Jiangsu 221111, China

Received  November 2009 Revised  February 2011 Published  June 2011

In this paper we study the following problem $$-\triangle_{p}u+|u|^{p-2}u=f(x,u) $$ in a bounded smooth domain $\Omega \subset {\bf R}^{N}$ with a nonlinear boundary value condition $|\nabla u|^{p-2}\frac{\partial u}{\partial\nu}=g(x,u)$. Results on the existence of positive solutions are obtained by the sub-supersolution method and the Mountain Pass Lemma.
Citation: Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623
References:
[1]

Electronic Journal of Differential Equations, 144 (2005), 1-8.  Google Scholar

[2]

J. M. A. A., 263 (2001), 195-223.  Google Scholar

[3]

Electronic Journal of Differential Equations, 40 (1999), 1-15. Google Scholar

[4]

Adv.Differential Equations, 6 (2001), 1-20.  Google Scholar

[5]

Adv. Differential Equations, 1 (1996), 91-110.  Google Scholar

[6]

J. Math. Anal. Appl., 223 (1998), 429-471. doi: 10.1006/jmaa.1998.5958.  Google Scholar

[7]

Math. Nachr., 173 (1995), 131-139. doi: 10.1002/mana.19951730109.  Google Scholar

[8]

Elliptic equations. Pitman Adv. Publ., Boston MA, 323 (1985), 44-95.  Google Scholar

[9]

Reg. conf. ser. Math, 65 (1986), 1-100.  Google Scholar

[10]

Comm. Partial Differential Equations, 26 (2001), 2189-2210. doi: 10.1081/PDE-100107818.  Google Scholar

[11]

Nonlinear Anal., 18 (1992), 957-971. doi: 10.1016/0362-546X(92)90132-X.  Google Scholar

[12]

Differential Integral Equations, 7 (1994), 301-313.  Google Scholar

[13]

Electronic Journal of Differential Equations, 57 (2003), 1-21.  Google Scholar

[14]

J. Differential Equations, 230 (2006), 337-361. doi: 10.1016/j.jde.2006.03.008.  Google Scholar

[15]

Nonlinear Differ. Equ. Appl., 8 (2001), 481-497. doi: 10.1007/PL00001460.  Google Scholar

[16]

Electronic Journal of Differential Equations, 10 (1998), 1-13.  Google Scholar

[17]

Comm. Partial Differential Equations, 33 (2008), 706-717. doi: 10.1080/03605300701518208.  Google Scholar

[18]

Nonlinear Analysis, 70 (2009), 328-334. doi: 10.1016/j.na.2007.12.003.  Google Scholar

[19]

Nonlinear Analysis, 64 (2006), 2007-2021. doi: 10.1016/j.na.2005.07.035.  Google Scholar

[20]

Differential Integral Equations, 8 (1995), 1911-1922.  Google Scholar

[21]

EJDE, 90 (2007), 1-14.  Google Scholar

[22]

Nonlinear Analysis, 69 (2008), 1343-1355. doi: 10.1016/j.na.2007.06.036.  Google Scholar

[23]

Proc. Roy. Soc. Edinburgh, 124A (1994), 189-198.  Google Scholar

[24]

Nonlinear Analysis, 27 (1996), 229-247. doi: 10.1016/0362-546X(94)00352-I.  Google Scholar

[25]

J. Math.Anal. Appl., 217 (1998), 672-686. doi: 10.1006/jmaa.1997.5762.  Google Scholar

[26]

Chinese Ann of Math., 20A (1999), 117-128.  Google Scholar

[27]

Journal Beijing University of Aeronautics and Astronautics, 27 (2001), 217-220. Google Scholar

[28]

Appl. Math. Comput., 156 (2004), 743-754. doi: 10.1016/j.amc.2003.06.024.  Google Scholar

[29]

J. Diff. Equs., 76 (1988), 159-189. doi: 10.1016/0022-0396(88)90068-X.  Google Scholar

[30]

J. Comm. Appl. Math., 197 (2006), 355-364. doi: 10.1016/j.cam.2005.08.027.  Google Scholar

[31]

Comm. Math. Phys., 68 (1979), 209-243. doi: 10.1007/BF01221125.  Google Scholar

[32]

Nonlinearity, 3 (1990), 677-694. doi: 10.1088/0951-7715/3/3/008.  Google Scholar

[33]

J. Math. Anal. Appl., 352 (2009), 234-245. doi: 10.1016/j.jmaa.2008.06.018.  Google Scholar

show all references

References:
[1]

Electronic Journal of Differential Equations, 144 (2005), 1-8.  Google Scholar

[2]

J. M. A. A., 263 (2001), 195-223.  Google Scholar

[3]

Electronic Journal of Differential Equations, 40 (1999), 1-15. Google Scholar

[4]

Adv.Differential Equations, 6 (2001), 1-20.  Google Scholar

[5]

Adv. Differential Equations, 1 (1996), 91-110.  Google Scholar

[6]

J. Math. Anal. Appl., 223 (1998), 429-471. doi: 10.1006/jmaa.1998.5958.  Google Scholar

[7]

Math. Nachr., 173 (1995), 131-139. doi: 10.1002/mana.19951730109.  Google Scholar

[8]

Elliptic equations. Pitman Adv. Publ., Boston MA, 323 (1985), 44-95.  Google Scholar

[9]

Reg. conf. ser. Math, 65 (1986), 1-100.  Google Scholar

[10]

Comm. Partial Differential Equations, 26 (2001), 2189-2210. doi: 10.1081/PDE-100107818.  Google Scholar

[11]

Nonlinear Anal., 18 (1992), 957-971. doi: 10.1016/0362-546X(92)90132-X.  Google Scholar

[12]

Differential Integral Equations, 7 (1994), 301-313.  Google Scholar

[13]

Electronic Journal of Differential Equations, 57 (2003), 1-21.  Google Scholar

[14]

J. Differential Equations, 230 (2006), 337-361. doi: 10.1016/j.jde.2006.03.008.  Google Scholar

[15]

Nonlinear Differ. Equ. Appl., 8 (2001), 481-497. doi: 10.1007/PL00001460.  Google Scholar

[16]

Electronic Journal of Differential Equations, 10 (1998), 1-13.  Google Scholar

[17]

Comm. Partial Differential Equations, 33 (2008), 706-717. doi: 10.1080/03605300701518208.  Google Scholar

[18]

Nonlinear Analysis, 70 (2009), 328-334. doi: 10.1016/j.na.2007.12.003.  Google Scholar

[19]

Nonlinear Analysis, 64 (2006), 2007-2021. doi: 10.1016/j.na.2005.07.035.  Google Scholar

[20]

Differential Integral Equations, 8 (1995), 1911-1922.  Google Scholar

[21]

EJDE, 90 (2007), 1-14.  Google Scholar

[22]

Nonlinear Analysis, 69 (2008), 1343-1355. doi: 10.1016/j.na.2007.06.036.  Google Scholar

[23]

Proc. Roy. Soc. Edinburgh, 124A (1994), 189-198.  Google Scholar

[24]

Nonlinear Analysis, 27 (1996), 229-247. doi: 10.1016/0362-546X(94)00352-I.  Google Scholar

[25]

J. Math.Anal. Appl., 217 (1998), 672-686. doi: 10.1006/jmaa.1997.5762.  Google Scholar

[26]

Chinese Ann of Math., 20A (1999), 117-128.  Google Scholar

[27]

Journal Beijing University of Aeronautics and Astronautics, 27 (2001), 217-220. Google Scholar

[28]

Appl. Math. Comput., 156 (2004), 743-754. doi: 10.1016/j.amc.2003.06.024.  Google Scholar

[29]

J. Diff. Equs., 76 (1988), 159-189. doi: 10.1016/0022-0396(88)90068-X.  Google Scholar

[30]

J. Comm. Appl. Math., 197 (2006), 355-364. doi: 10.1016/j.cam.2005.08.027.  Google Scholar

[31]

Comm. Math. Phys., 68 (1979), 209-243. doi: 10.1007/BF01221125.  Google Scholar

[32]

Nonlinearity, 3 (1990), 677-694. doi: 10.1088/0951-7715/3/3/008.  Google Scholar

[33]

J. Math. Anal. Appl., 352 (2009), 234-245. doi: 10.1016/j.jmaa.2008.06.018.  Google Scholar

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[3]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[4]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[5]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[6]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[7]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[8]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[9]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[10]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[11]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[12]

Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019

[13]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[14]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374

[15]

Yuta Tanoue. Improved Hoeffding inequality for dependent bounded or sub-Gaussian random variables. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 53-60. doi: 10.3934/puqr.2021003

[16]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[17]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[18]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[19]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[20]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]