-
Previous Article
Bifurcation analysis of bursting solutions of two Hindmarsh-Rose neurons with joint electrical and synaptic coupling
- DCDS-B Home
- This Issue
-
Next Article
Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking
Positive solutions of $p$-Laplacian equations with nonlinear boundary condition
1. | Institute of Mathematics, School of Mathematics Science, Nanjing Normal University, Jiangsu Nanjing 210046, China, China |
2. | School of Mathematics and Physics, Xuzhou Institute of Technology, Xuzhou, Jiangsu 221111, China |
References:
[1] |
Electronic Journal of Differential Equations, 144 (2005), 1-8. |
[2] |
J. M. A. A., 263 (2001), 195-223. |
[3] |
Electronic Journal of Differential Equations, 40 (1999), 1-15. Google Scholar |
[4] |
Adv.Differential Equations, 6 (2001), 1-20. |
[5] |
Adv. Differential Equations, 1 (1996), 91-110. |
[6] |
J. Math. Anal. Appl., 223 (1998), 429-471.
doi: 10.1006/jmaa.1998.5958. |
[7] |
Math. Nachr., 173 (1995), 131-139.
doi: 10.1002/mana.19951730109. |
[8] |
Elliptic equations. Pitman Adv. Publ., Boston MA, 323 (1985), 44-95. |
[9] |
Reg. conf. ser. Math, 65 (1986), 1-100. |
[10] |
Comm. Partial Differential Equations, 26 (2001), 2189-2210.
doi: 10.1081/PDE-100107818. |
[11] |
Nonlinear Anal., 18 (1992), 957-971.
doi: 10.1016/0362-546X(92)90132-X. |
[12] |
Differential Integral Equations, 7 (1994), 301-313. |
[13] |
Electronic Journal of Differential Equations, 57 (2003), 1-21. |
[14] |
J. Differential Equations, 230 (2006), 337-361.
doi: 10.1016/j.jde.2006.03.008. |
[15] |
Nonlinear Differ. Equ. Appl., 8 (2001), 481-497.
doi: 10.1007/PL00001460. |
[16] |
Electronic Journal of Differential Equations, 10 (1998), 1-13. |
[17] |
Comm. Partial Differential Equations, 33 (2008), 706-717.
doi: 10.1080/03605300701518208. |
[18] |
Nonlinear Analysis, 70 (2009), 328-334.
doi: 10.1016/j.na.2007.12.003. |
[19] |
Nonlinear Analysis, 64 (2006), 2007-2021.
doi: 10.1016/j.na.2005.07.035. |
[20] |
Differential Integral Equations, 8 (1995), 1911-1922. |
[21] |
EJDE, 90 (2007), 1-14. |
[22] |
Nonlinear Analysis, 69 (2008), 1343-1355.
doi: 10.1016/j.na.2007.06.036. |
[23] |
Proc. Roy. Soc. Edinburgh, 124A (1994), 189-198. |
[24] |
Nonlinear Analysis, 27 (1996), 229-247.
doi: 10.1016/0362-546X(94)00352-I. |
[25] |
J. Math.Anal. Appl., 217 (1998), 672-686.
doi: 10.1006/jmaa.1997.5762. |
[26] |
Chinese Ann of Math., 20A (1999), 117-128. |
[27] |
Journal Beijing University of Aeronautics and Astronautics, 27 (2001), 217-220. Google Scholar |
[28] |
Appl. Math. Comput., 156 (2004), 743-754.
doi: 10.1016/j.amc.2003.06.024. |
[29] |
J. Diff. Equs., 76 (1988), 159-189.
doi: 10.1016/0022-0396(88)90068-X. |
[30] |
J. Comm. Appl. Math., 197 (2006), 355-364.
doi: 10.1016/j.cam.2005.08.027. |
[31] |
Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[32] |
Nonlinearity, 3 (1990), 677-694.
doi: 10.1088/0951-7715/3/3/008. |
[33] |
J. Math. Anal. Appl., 352 (2009), 234-245.
doi: 10.1016/j.jmaa.2008.06.018. |
show all references
References:
[1] |
Electronic Journal of Differential Equations, 144 (2005), 1-8. |
[2] |
J. M. A. A., 263 (2001), 195-223. |
[3] |
Electronic Journal of Differential Equations, 40 (1999), 1-15. Google Scholar |
[4] |
Adv.Differential Equations, 6 (2001), 1-20. |
[5] |
Adv. Differential Equations, 1 (1996), 91-110. |
[6] |
J. Math. Anal. Appl., 223 (1998), 429-471.
doi: 10.1006/jmaa.1998.5958. |
[7] |
Math. Nachr., 173 (1995), 131-139.
doi: 10.1002/mana.19951730109. |
[8] |
Elliptic equations. Pitman Adv. Publ., Boston MA, 323 (1985), 44-95. |
[9] |
Reg. conf. ser. Math, 65 (1986), 1-100. |
[10] |
Comm. Partial Differential Equations, 26 (2001), 2189-2210.
doi: 10.1081/PDE-100107818. |
[11] |
Nonlinear Anal., 18 (1992), 957-971.
doi: 10.1016/0362-546X(92)90132-X. |
[12] |
Differential Integral Equations, 7 (1994), 301-313. |
[13] |
Electronic Journal of Differential Equations, 57 (2003), 1-21. |
[14] |
J. Differential Equations, 230 (2006), 337-361.
doi: 10.1016/j.jde.2006.03.008. |
[15] |
Nonlinear Differ. Equ. Appl., 8 (2001), 481-497.
doi: 10.1007/PL00001460. |
[16] |
Electronic Journal of Differential Equations, 10 (1998), 1-13. |
[17] |
Comm. Partial Differential Equations, 33 (2008), 706-717.
doi: 10.1080/03605300701518208. |
[18] |
Nonlinear Analysis, 70 (2009), 328-334.
doi: 10.1016/j.na.2007.12.003. |
[19] |
Nonlinear Analysis, 64 (2006), 2007-2021.
doi: 10.1016/j.na.2005.07.035. |
[20] |
Differential Integral Equations, 8 (1995), 1911-1922. |
[21] |
EJDE, 90 (2007), 1-14. |
[22] |
Nonlinear Analysis, 69 (2008), 1343-1355.
doi: 10.1016/j.na.2007.06.036. |
[23] |
Proc. Roy. Soc. Edinburgh, 124A (1994), 189-198. |
[24] |
Nonlinear Analysis, 27 (1996), 229-247.
doi: 10.1016/0362-546X(94)00352-I. |
[25] |
J. Math.Anal. Appl., 217 (1998), 672-686.
doi: 10.1006/jmaa.1997.5762. |
[26] |
Chinese Ann of Math., 20A (1999), 117-128. |
[27] |
Journal Beijing University of Aeronautics and Astronautics, 27 (2001), 217-220. Google Scholar |
[28] |
Appl. Math. Comput., 156 (2004), 743-754.
doi: 10.1016/j.amc.2003.06.024. |
[29] |
J. Diff. Equs., 76 (1988), 159-189.
doi: 10.1016/0022-0396(88)90068-X. |
[30] |
J. Comm. Appl. Math., 197 (2006), 355-364.
doi: 10.1016/j.cam.2005.08.027. |
[31] |
Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[32] |
Nonlinearity, 3 (1990), 677-694.
doi: 10.1088/0951-7715/3/3/008. |
[33] |
J. Math. Anal. Appl., 352 (2009), 234-245.
doi: 10.1016/j.jmaa.2008.06.018. |
[1] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[2] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[3] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395 |
[4] |
Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021030 |
[5] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003 |
[6] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[7] |
Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021094 |
[8] |
Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021019 |
[9] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[10] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[11] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398 |
[12] |
Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019 |
[13] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043 |
[14] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374 |
[15] |
Yuta Tanoue. Improved Hoeffding inequality for dependent bounded or sub-Gaussian random variables. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 53-60. doi: 10.3934/puqr.2021003 |
[16] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[17] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[18] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[19] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[20] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]