Citation: |
[1] |
E. Acerbi and N. Fusco, Regularity of minimizers of non-quadratic functionals: the case 1$<$p$<$2, J. Math. Anal. Appl., 140 (1989), 115-135. |
[2] |
L. Budney and T. Iwaniec, Removability of singularities of $A$-harmonic functions, Differential and Integral Equations, 12 (1999), 261-274. |
[3] |
E. Dibenedetto, $C$$1+\alpha$ Local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.doi: 10.1016/0362-546X(83)90061-5. |
[4] |
S. Ding and D. Sylvester, Weak reverse Hölder inequalities and imbedding inequalities for solutions to the $A$-harmonic equation, Nonlinear Anal., 51 (2002), 783-800.doi: 10.1016/S0362-546X(01)00862-8. |
[5] |
L. D'Onofrio and T. Iwaniec, The p-harmonic transform beyond its natural domain of definition, Indiana Univ. Math. J., 53 (2004), 683-718.doi: 10.1512/iumj.2004.53.2462. |
[6] |
Z. Feng, S. Zheng and H. Lu, Green's function of nonlinear degenerate elliptic operators and its application to regularity, Differential and Integral Equations, 21 (2008), 717-741. |
[7] |
Z. Feng and Q. G. Meng, Exact solution for a two-dimensional kdv-burgers-type equation with nonlinear terms of any order, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 397-413. |
[8] |
Z. Feng and G. Chen, Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth, Discrete Contin. Dyn. Syst., 24 (2009), 763-780.doi: 10.3934/dcds.2009.24.763. |
[9] |
N. Fusco and J. Hutchinson, Partial regularity for minimizers of certain functionals having nonquadratic growth, Ann. Mat. Pura. Appl., 155 (1989), 1-24.doi: 10.1007/BF01765932. |
[10] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Spinger-Verlag, Berlin, 2001. |
[11] |
M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems," Annals of Mathematics Studies, 105, Princeton Univ. Press, 1983. |
[12] |
M. Giaquinta and G. Modica, Remark on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math., 57 (1986), 55-99.doi: 10.1007/BF01172492. |
[13] |
J. Heinonen, T. Kilpeläinen and O. Martio, "Nonlinear Potential Theory of Degenerate Elliptic Equations," Oxford University Press, New York, 1993. |
[14] |
J. Heinonen and T. Kilpeläinen, A-superharmonic functions and supersolutions of degenerate elliptic equations, Ark. Mat., 26 (1988), 87-105.doi: 10.1007/BF02386110. |
[15] |
Q. Han and F. H. Lin, "Elliptic Partial Differential Equations," American Mathematical Society, Providence, Rhode Island, 1997. |
[16] |
R. Hardt, F. H. Lin and L. Mou, Strong convergence of p-harmonic mappings, Longman Scientific and Technical, Pitman Res. Notes Math. Ser. Harlow, 314 (1994), 58-64. |
[17] |
T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew Math., 454 (1994), 143-161.doi: 10.1515/crll.1994.454.143. |
[18] |
T. Kilpeläinen, p-Laplacian type equations involving measures, Proceedings of the International Congress of Mathematicians, 167-176, Vol. III, Higher Ed. Press, Beijing, 2002. |
[19] |
T. Kilpeläinen and J. Malý, The wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.doi: 10.1007/BF02392793. |
[20] |
P. Koskela and O. Martio, Removability theorems for solution of degenerate elliptic PDEs, Ark. Mat., 31 (1993), 339-353.doi: 10.1007/BF02559490. |
[21] |
P. Lindqvist and O. Martio, Two theorems of N.Wiener for solutions of quasilinear elliptic equations, Acta Math., 155 (1985), 153-171.doi: 10.1007/BF02392541. |
[22] |
Q. A. Ladyzhenskaya and N. N. Ural'tseva, "Linear and Quasilinear Elliptic Equations" (in chinese), Science Press House, Beijing, 1985. |
[23] |
C. A. Nolder, Hardy-Littlewood theorems for $A$-harmonic tensors, Illinois J. Math., 43 (1999), 613-632. |
[24] |
Y. G. Reshetnyak, "Space Mappings with Bounded Distortion," Amer. Math. Soc. (Translation of Math Monographs), Vol. 73, Providence, 1989. |
[25] |
J. Serrin and H. H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189 (2002), 79-142.doi: 10.1007/BF02392645. |
[26] |
N. S. Trudinger and X. J. Wang, On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math., 124 (2002), 369-410.doi: 10.1353/ajm.2002.0012. |
[27] |
K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math., 138 (1977), 219-240.doi: 10.1007/BF02392316. |
[28] |
S. Zheng, Regualrity results for the generalized Beltrami systems, Acta Math. Sinica, 20 (2004), 193-205.doi: 10.1007/s10114-003-0250-x. |
[29] |
S. Zheng, Removable singularities of solutions of $A$-harmonic type equations, Acta Math. Appl. Sinica, 20 (2004), 115-122.doi: 10.1007/s10255-004-0154-2. |
[30] |
S. Zheng, X. Zheng and Z. Feng, Regularity for a class of degenerate elliptic equations with discontinuous coefficients under natural growth, J. Math. Anal. Appl., 346 (2008), 359-373.doi: 10.1016/j.jmaa.2008.05.059. |