- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Time-varying delayed feedback control for an internet congestion control model
Optimal regularity for $A$-harmonic type equations under the natural growth
1. | Department of Mathematics, Beijing Jiaotong University, Beijing 100044 |
2. | Department of Mathematics, Taizhou University, Linhai, Zhejiang 317000, China |
3. | Department of Mathematics, University of Texas-Pan American, Edinburg, TX 78539 |
References:
[1] |
J. Math. Anal. Appl., 140 (1989), 115-135. |
[2] |
Differential and Integral Equations, 12 (1999), 261-274. |
[3] |
Nonlinear Anal., 7 (1983), 827-850.
doi: 10.1016/0362-546X(83)90061-5. |
[4] |
Nonlinear Anal., 51 (2002), 783-800.
doi: 10.1016/S0362-546X(01)00862-8. |
[5] |
Indiana Univ. Math. J., 53 (2004), 683-718.
doi: 10.1512/iumj.2004.53.2462. |
[6] |
Differential and Integral Equations, 21 (2008), 717-741. |
[7] |
Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 397-413. Google Scholar |
[8] |
Discrete Contin. Dyn. Syst., 24 (2009), 763-780.
doi: 10.3934/dcds.2009.24.763. |
[9] |
Ann. Mat. Pura. Appl., 155 (1989), 1-24.
doi: 10.1007/BF01765932. |
[10] |
Spinger-Verlag, Berlin, 2001. |
[11] |
Annals of Mathematics Studies, 105, Princeton Univ. Press, 1983. |
[12] |
Manuscripta Math., 57 (1986), 55-99.
doi: 10.1007/BF01172492. |
[13] |
Oxford University Press, New York, 1993. |
[14] |
Ark. Mat., 26 (1988), 87-105.
doi: 10.1007/BF02386110. |
[15] |
American Mathematical Society, Providence, Rhode Island, 1997. |
[16] |
Pitman Res. Notes Math. Ser. Harlow, 314 (1994), 58-64. |
[17] |
J. Reine Angew Math., 454 (1994), 143-161.
doi: 10.1515/crll.1994.454.143. |
[18] |
Proceedings of the International Congress of Mathematicians, 167-176, Vol. III, Higher Ed. Press, Beijing, 2002. |
[19] |
Acta Math., 172 (1994), 137-161.
doi: 10.1007/BF02392793. |
[20] |
Ark. Mat., 31 (1993), 339-353.
doi: 10.1007/BF02559490. |
[21] |
Acta Math., 155 (1985), 153-171.
doi: 10.1007/BF02392541. |
[22] |
Science Press House, Beijing, 1985. Google Scholar |
[23] |
Illinois J. Math., 43 (1999), 613-632. |
[24] |
Amer. Math. Soc. (Translation of Math Monographs), Vol. 73, Providence, 1989. |
[25] |
Acta Math., 189 (2002), 79-142.
doi: 10.1007/BF02392645. |
[26] |
Amer. J. Math., 124 (2002), 369-410.
doi: 10.1353/ajm.2002.0012. |
[27] |
Acta Math., 138 (1977), 219-240.
doi: 10.1007/BF02392316. |
[28] |
Acta Math. Sinica, 20 (2004), 193-205.
doi: 10.1007/s10114-003-0250-x. |
[29] |
Acta Math. Appl. Sinica, 20 (2004), 115-122.
doi: 10.1007/s10255-004-0154-2. |
[30] |
J. Math. Anal. Appl., 346 (2008), 359-373.
doi: 10.1016/j.jmaa.2008.05.059. |
show all references
References:
[1] |
J. Math. Anal. Appl., 140 (1989), 115-135. |
[2] |
Differential and Integral Equations, 12 (1999), 261-274. |
[3] |
Nonlinear Anal., 7 (1983), 827-850.
doi: 10.1016/0362-546X(83)90061-5. |
[4] |
Nonlinear Anal., 51 (2002), 783-800.
doi: 10.1016/S0362-546X(01)00862-8. |
[5] |
Indiana Univ. Math. J., 53 (2004), 683-718.
doi: 10.1512/iumj.2004.53.2462. |
[6] |
Differential and Integral Equations, 21 (2008), 717-741. |
[7] |
Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 397-413. Google Scholar |
[8] |
Discrete Contin. Dyn. Syst., 24 (2009), 763-780.
doi: 10.3934/dcds.2009.24.763. |
[9] |
Ann. Mat. Pura. Appl., 155 (1989), 1-24.
doi: 10.1007/BF01765932. |
[10] |
Spinger-Verlag, Berlin, 2001. |
[11] |
Annals of Mathematics Studies, 105, Princeton Univ. Press, 1983. |
[12] |
Manuscripta Math., 57 (1986), 55-99.
doi: 10.1007/BF01172492. |
[13] |
Oxford University Press, New York, 1993. |
[14] |
Ark. Mat., 26 (1988), 87-105.
doi: 10.1007/BF02386110. |
[15] |
American Mathematical Society, Providence, Rhode Island, 1997. |
[16] |
Pitman Res. Notes Math. Ser. Harlow, 314 (1994), 58-64. |
[17] |
J. Reine Angew Math., 454 (1994), 143-161.
doi: 10.1515/crll.1994.454.143. |
[18] |
Proceedings of the International Congress of Mathematicians, 167-176, Vol. III, Higher Ed. Press, Beijing, 2002. |
[19] |
Acta Math., 172 (1994), 137-161.
doi: 10.1007/BF02392793. |
[20] |
Ark. Mat., 31 (1993), 339-353.
doi: 10.1007/BF02559490. |
[21] |
Acta Math., 155 (1985), 153-171.
doi: 10.1007/BF02392541. |
[22] |
Science Press House, Beijing, 1985. Google Scholar |
[23] |
Illinois J. Math., 43 (1999), 613-632. |
[24] |
Amer. Math. Soc. (Translation of Math Monographs), Vol. 73, Providence, 1989. |
[25] |
Acta Math., 189 (2002), 79-142.
doi: 10.1007/BF02392645. |
[26] |
Amer. J. Math., 124 (2002), 369-410.
doi: 10.1353/ajm.2002.0012. |
[27] |
Acta Math., 138 (1977), 219-240.
doi: 10.1007/BF02392316. |
[28] |
Acta Math. Sinica, 20 (2004), 193-205.
doi: 10.1007/s10114-003-0250-x. |
[29] |
Acta Math. Appl. Sinica, 20 (2004), 115-122.
doi: 10.1007/s10255-004-0154-2. |
[30] |
J. Math. Anal. Appl., 346 (2008), 359-373.
doi: 10.1016/j.jmaa.2008.05.059. |
[1] |
Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033 |
[2] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[3] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[4] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[5] |
Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075 |
[6] |
Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004 |
[7] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384 |
[8] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[9] |
Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021017 |
[10] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[11] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[12] |
Wen Si. Response solutions for degenerate reversible harmonic oscillators. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3951-3972. doi: 10.3934/dcds.2021023 |
[13] |
Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012 |
[14] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[15] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[16] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[17] |
Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021099 |
[18] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[19] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[20] |
Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, 2021, 14 (2) : 389-406. doi: 10.3934/krm.2021009 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]