Citation: |
[1] |
R. Aris, "The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts," Clarendon Press, Oxford, 1975. |
[2] |
J. B. van den Berg, V. Guyonne and J. Hulshof, Flame balls for a free boundary combustion model with radiative transfer, SIAM J. Appl. Math., 67 (2006), 116-137.doi: 10.1137/050636516. |
[3] |
H. Berestycki and B. Larrouturou, Quelques aspects mathématiques de la propagation des flammes prémélangées, Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Vol. X (Paris, 1987-1988), 65-129, Pitman Res. Notes Math. Ser., 220, Longman Sci. Tech., Harlow, 1991. |
[4] |
H. Berestycki, B. Larrouturou and J.-M. Roquejoffre, Mathematical investigation of the cold boundary difficulty in flame propagation theory, Dynamical Issues in Combustion Theory (Minneapolis, MN, 1989), 37-61, IMA Vol. Math. Appl., 35, Springer, New York, 1991. |
[5] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.doi: 10.1007/BF00250555. |
[6] |
H. Berestycki, B. Nicolaenko and B. Scheurer, Traveling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal., 16 (1985), 1207-1242.doi: 10.1137/0516088. |
[7] |
H. Bockhorn, J. Fröhlich and K. Schneider, An adaptive two-dimensional wavelet-vaguelette algorithm for the computation of flame balls, Combustion Theory and Modelling, 3 (1999), 177-198.doi: 10.1088/1364-7830/3/1/010. |
[8] |
I. Brailovsky and G. I. Sivashinsky, On stationay and travelling flameballs, Combustion and Flame, 110 (1997), 524-529.doi: 10.1016/S0010-2180(97)00001-1. |
[9] |
J. Brindley, N. A. Jivraj, J. H. Merkin and S. K. Scott, Stationary-state solutions for coupled reaction-diffusion and temperature-conduction equations. II. Spherical geometry with Dirichlet boundary conditions, Proc. Roy. Soc. London Ser. A, 430 (1990), 479-488.doi: 10.1098/rspa.1990.0102. |
[10] |
J. Buckmaster, G. Joulin and P. Ronney, The structure and stability of nonadiabatic flame balls, Combustion and Flame, 79 (1990), 381-392.doi: 10.1016/0010-2180(90)90147-J. |
[11] |
J. Buckmaster, G. Joulin and P. D. Ronney, The structure and stability of nonadiabatic flame balls: II. Effects of far-field losses, Combustion and Flame, 84 (1991), 411-422.doi: 10.1016/0010-2180(91)90015-4. |
[12] |
C. J. Lee and J. Buckmaster, The structure and stability of flame balls: a near-equidiffusional flame analysis, SIAM J. Appl. Math., 51 (1991), 1315-1326.doi: 10.1137/0151066. |
[13] |
R. S. Cantrell and C. Cosner, "Spatial Ecology Via Reaction-Diffusion Equations," Wiley Series in Mathematical and Computational Biology, John Wiley & Sons Ltd., Chichester, 2003. |
[14] |
P. Clément and G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 97-121. |
[15] |
Y. Du and Y. Lou, Proof of a conjecture for the perturbed Gelfand equation from combustion theory, J. Differential Equations, 173 (2001), 213-230.doi: 10.1006/jdeq.2000.3932. |
[16] |
V. Giovangigli, Nonadiabatic plane laminar flames and their singular limits, SIAM J. Math. Anal., 21 (1990), 1305-1325.doi: 10.1137/0521072. |
[17] |
L. Glangetas and J.-M. Roquejoffre, Rigorous derivation of the dispersion relation in a combustion model with heat losses, Preprint Publications du Laboratoire d'Analyse Numérique R95032, (1995). |
[18] |
V. Guyonne and L. Lorenzi, Instability in a flame ball problem, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 315-350. |
[19] |
V. Guyonne and P. Noble, On a model of flame ball with radiative transfer, SIAM J. Appl. Math., 67 (2007), 854-868.doi: 10.1137/060659612. |
[20] |
V. Hutson, J. López-Gómez, K. Mischaikow and G. Vickers, Limit behaviour for a competing species problem with diffusion, Dynamical Systems and Applications, World Sci. Ser. Appl. Anal., vol. 4, World Sci. Publ., River Edge, NJ, 1995, pp. 343-358. |
[21] |
L. Kagan and G. I. Sivashinsky, Self-fragmentation of nonadiabatic cellular flames, Combust. Flame, 108 (1997), 220-226.doi: 10.1016/S0010-2180(96)00108-3. |
[22] |
L. Kagan, S. Minaev and G. I. Sivashinsky, On self-drifting flame balls, Math. Comput. Simulation, 65 (2004), 511-520.doi: 10.1016/j.matcom.2004.01.013. |
[23] |
A. K. Kapila, B. J. Matkowsky and J. Vega, Reactive-diffusive system with Arrhenius kinetics: peculiarities of the spherical geometry, SIAM J. Appl. Math., 38 (1980), 382-401.doi: 10.1137/0138032. |
[24] |
M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.doi: 10.1007/BF00251502. |
[25] |
C. Lederman, J.-M. Roquejoffre and N. Wolanski, Mathematical justification of a nonlinear integrodifferential equation for the propagation of spherical flames, Ann. Mat. Pura Appl., 183 (2004), 173-239.doi: 10.1007/s10231-003-0085-1. |
[26] |
C. J. Lee and J. Buckmaster, The structure and stability of flame balls: a near-equidiffusional flame analysis, SIAM J. Appl. Math., 51 (1991), 1315-1326.doi: 10.1137/0151066. |
[27] |
B. Lewis and G. von Elbe, "Combustion, Flames and Explosion of Gases," 3rd ed., Academic Press, Orlando, 1987. |
[28] |
M. Marion, Qualitative properties of a nonlinear system for laminar flames without ignition temperature, Nonlinear Anal., 9 (1985), 1269-1292.doi: 10.1016/0362-546X(85)90035-5. |
[29] |
S. Minaev, L. Kagan, G. Joulin and G. I. Sivashinsky, On self-drifting flame balls, Combust. Theory Model., 5 (2001), 609-622.doi: 10.1088/1364-7830/5/4/306. |
[30] |
P. Ronney, Near-Limit Flame Structures at Low Lewis Number, Combustion and Flame, 82 (1990), 1-14.doi: 10.1016/0010-2180(90)90074-2. |
[31] |
L. Roques, Study of the premixed flame model with heat losses. The existence of two solutions, European J. Appl. Math., 16 (2005), 741-765.doi: 10.1017/S0956792505006431. |
[32] |
G. Sagon, Steady fronts solutions of semilinear elliptic equations in exterior domains arising in flame propagation, Ann. Mat. Pura Appl., 185 (2006), 273-291. |
[33] |
A. A. Shah, R. W. Thatcher and J. W. Dold, Stability of a spherical flame ball in a porous medium, Combustion Theory and Modelling, 4 (2000), 511-534.doi: 10.1088/1364-7830/4/4/308. |
[34] |
Y. B. Zeldovich, A theory of the limit of slow flame propagation, Zh. Prikl. Mekh. i Tekhn. Fiz., 1 (1941), 159-169. |