-
Previous Article
Robustness of signaling gradient in drosophila wing imaginal disc
- DCDS-B Home
- This Issue
-
Next Article
Thermalization time in a model of neutron star
Front propagation in diffusion-aggregation models with bi-stable reaction
1. | Research Mathematical Institute, Voronezh State University, 394006 Voronezh, Russian Federation |
2. | Department of Pure and Applied Mathematics, University of Modena and Reggio Emilia, 41125 Reggio Emilia, Italy |
$v_\tau=(D(v)v_x)_{x}+f(v), $
where the diffusivity $D$ changes sign twice in the interval $(0,1)$ (from positive to negative and again to positive) and the reaction $f$ is bi-stable. We show that classical travelling waves with decreasing profile do exist for a single admissible value of their speed of propagation which can be either positive or negative, according to the behavior of $f$ and $D$. An example is given, illustrating the employed techniques. The results are then generalized to a diffusivity $D$ with $2n$ sign changes.
References:
[1] |
W. C. Allee, "Animal Aggregations," University of Chicago Press, Chicago, 1931. |
[2] |
W. Alt, Models for mutual attraction and aggregation of motile individuals, in "Lecture Notes in Biomathematics," 57, Springer-Verlag, (1985), 33-38. |
[3] |
D. G. Aronson, The role of diffusion in mathematical population biology: Skellam revisited, in "Lecture Notes in Biomathematics," 57, Springer-Verlag, (1985), 2-6. |
[4] |
V. Capasso, D. Morale and K. Oelschläger, An interacting particle system modelling aggregation behaviour: from individuals to populations, J. Math. Biology, 50 (2005), 49-66.
doi: 10.1007/s00285-004-0279-1. |
[5] |
L. Ferracuti, C. Marcelli and F. Papalini, Travelling waves in some reaction-diffusion-aggregation equations, Adv. Dyn. Syst. Appl., 4 (2009), 19-33. |
[6] |
B. H. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection-Reaction," Birkhäuser Verlag, Basel, 2004. |
[7] |
P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms, Discrete Continuous Dynam. Systems - B, 6 (2006), 1175-1189. |
[8] |
P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Aggregative movement and front propagation for bi-stable population models, Math. Models and Methods in Appl. Sciences, 17 (2007), 1351-1368.
doi: 10.1142/S0218202507002303. |
[9] |
L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly-degenerate Fisher-KPP equations, J. Diff. Eqs, 195 (2003), 471-496.
doi: 10.1016/j.jde.2003.06.005. |
[10] |
Víctor Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Trans. of the American Math. Society, 7 (2004), 2737-2756. |
[11] |
Peter Turchin, Population consequences of aggregative movements, The Journal of Animal Ecology, 1 (1989), 75-100.
doi: 10.2307/4987. |
show all references
References:
[1] |
W. C. Allee, "Animal Aggregations," University of Chicago Press, Chicago, 1931. |
[2] |
W. Alt, Models for mutual attraction and aggregation of motile individuals, in "Lecture Notes in Biomathematics," 57, Springer-Verlag, (1985), 33-38. |
[3] |
D. G. Aronson, The role of diffusion in mathematical population biology: Skellam revisited, in "Lecture Notes in Biomathematics," 57, Springer-Verlag, (1985), 2-6. |
[4] |
V. Capasso, D. Morale and K. Oelschläger, An interacting particle system modelling aggregation behaviour: from individuals to populations, J. Math. Biology, 50 (2005), 49-66.
doi: 10.1007/s00285-004-0279-1. |
[5] |
L. Ferracuti, C. Marcelli and F. Papalini, Travelling waves in some reaction-diffusion-aggregation equations, Adv. Dyn. Syst. Appl., 4 (2009), 19-33. |
[6] |
B. H. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection-Reaction," Birkhäuser Verlag, Basel, 2004. |
[7] |
P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms, Discrete Continuous Dynam. Systems - B, 6 (2006), 1175-1189. |
[8] |
P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Aggregative movement and front propagation for bi-stable population models, Math. Models and Methods in Appl. Sciences, 17 (2007), 1351-1368.
doi: 10.1142/S0218202507002303. |
[9] |
L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly-degenerate Fisher-KPP equations, J. Diff. Eqs, 195 (2003), 471-496.
doi: 10.1016/j.jde.2003.06.005. |
[10] |
Víctor Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Trans. of the American Math. Society, 7 (2004), 2737-2756. |
[11] |
Peter Turchin, Population consequences of aggregative movements, The Journal of Animal Ecology, 1 (1989), 75-100.
doi: 10.2307/4987. |
[1] |
Yuming Paul Zhang. On a class of diffusion-aggregation equations. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 907-932. doi: 10.3934/dcds.2020066 |
[2] |
Philip K. Maini, Luisa Malaguti, Cristina Marcelli, Serena Matucci. Diffusion-aggregation processes with mono-stable reaction terms. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1175-1189. doi: 10.3934/dcdsb.2006.6.1175 |
[3] |
Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242 |
[4] |
Antoine Benoit. Finite speed of propagation for mixed problems in the $WR$ class. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2351-2358. doi: 10.3934/cpaa.2014.13.2351 |
[5] |
Lihua Min, Xiaoping Yang. Finite speed of propagation and algebraic time decay of solutions to a generalized thin film equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 543-566. doi: 10.3934/cpaa.2014.13.543 |
[6] |
Jean-Daniel Djida, Juan J. Nieto, Iván Area. Nonlocal time-porous medium equation: Weak solutions and finite speed of propagation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4031-4053. doi: 10.3934/dcdsb.2019049 |
[7] |
Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 41-67. doi: 10.3934/dcds.2008.21.41 |
[8] |
Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed II - cylindrical-type domains. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 19-61. doi: 10.3934/dcds.2009.25.19 |
[9] |
Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657 |
[10] |
S. Bonafede, G. R. Cirmi, A.F. Tedeev. Finite speed of propagation for the porous media equation with lower order terms. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 305-314. doi: 10.3934/dcds.2000.6.305 |
[11] |
Shangbing Ai, Wenzhang Huang, Zhi-An Wang. Reaction, diffusion and chemotaxis in wave propagation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 1-21. doi: 10.3934/dcdsb.2015.20.1 |
[12] |
L. M. Abia, O. Angulo, J.C. López-Marcos. Size-structured population dynamics models and their numerical solutions. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1203-1222. doi: 10.3934/dcdsb.2004.4.1203 |
[13] |
Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057 |
[14] |
Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41 |
[15] |
Chiun-Chuan Chen, Li-Chang Hung, Masayasu Mimura, Daishin Ueyama. Exact travelling wave solutions of three-species competition--diffusion systems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2653-2669. doi: 10.3934/dcdsb.2012.17.2653 |
[16] |
Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 |
[17] |
R. Kowalczyk, A. Gamba, L. Preziosi. On the stability of homogeneous solutions to some aggregation models. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 203-220. doi: 10.3934/dcdsb.2004.4.203 |
[18] |
Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541 |
[19] |
Anouar El Harrak, Hatim Tayeq, Amal Bergam. A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2183-2197. doi: 10.3934/dcdss.2021062 |
[20] |
Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]