-
Previous Article
Long time behavior of some epidemic models
- DCDS-B Home
- This Issue
-
Next Article
Front propagation in diffusion-aggregation models with bi-stable reaction
Robustness of signaling gradient in drosophila wing imaginal disc
1. | Zhou Pei-Yuan Center for Applied Mathematics, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084 |
2. | Department of Mathematics, Center for Complex Biological Systems, University of California, Irvine, California, 92697-3875 |
3. | Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California, 92697-2300, United States |
4. | Department of Mathematics, Center for Complex Biological Systems & Center for Mathematical and Computational Biology, University of California, Irvine, California, 92697-3875, United States |
References:
[1] |
G. H. Baeg and N. Perrimon, Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila, Curr. Opin. Cell. Biol., 12 (2000), 575-580.
doi: 10.1016/S0955-0674(00)00134-4. |
[2] |
G. H. Baeg, E. M. Selva, R. M. Goodman, R. Dasgupta and N. Perrimon, The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors, Dev. Biol., 276 (2004), 89-100.
doi: 10.1016/j.ydbio.2004.08.023. |
[3] |
T. Y. Belenkaya, C. Han, D. Yan, R. J. Opoka, M. Khodoun, H. Liu, and X. Lin, Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans, Cell, 119 (2004), 231-244.
doi: 10.1016/j.cell.2004.09.031. |
[4] |
D. J. Bornemann, J. E. Duncan, W. Staatz, S. Seleck and R. Warrior, Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, hedgehog and Decapentaplegic signaling pathways, Development, 131 (2004), 1927-1938.
doi: 10.1242/dev.01061. |
[5] |
K. M. Cadigan, M. P. Fish, E. J. Rulifson and R. Nusse, Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing, Cell, 93 (1998), 767-777.
doi: 10.1016/S0092-8674(00)81438-5. |
[6] |
A. Eldar, R. Dorfman, D. Weiss, H. Ashe, B. Z. Shilo and N. Barkai, Robustness of MmP morphogen gradient in Drosophila embryonic patterning, Nature, 419 (2002), 304-308.
doi: 10.1038/nature01061. |
[7] |
A. Eldar, D. Rosin, B. Z. Shilo and N. Barkai, Self-enhanced ligand degradation underlies robustness of morphogen graients, Dev. Cell, 5 (2003), 635-646.
doi: 10.1016/S1534-5807(03)00292-2. |
[8] |
A. Eldar, B. Z. Shilo and N. Barkai, Elucidating mechanisms underlying robustness of morphogen gradients, Curr. Opin. Genet. Dev., 14 (2004), 435-439. |
[9] |
E. V. Entchev, A. Schwabedissen and M. Gonzá lez-Gaitán, Grandient formation of the TGF-$\beta$ homolog dpp, Cell, 103 (2000), 981-991.
doi: 10.1016/S0092-8674(00)00200-2. |
[10] |
M. Fujise, S. Takeo, K. Kamimura, T. Matsuo, T. Aigaki, S. Izumi and H. Nakato, Dally regulates Dpp morphogen gradient formation in the Drosophila wing, Development, 130 (2003), 1515-1522.
doi: 10.1242/dev.00379. |
[11] |
Y. Funakoshi, M. Minami and T. Tabata, Mtv shapes the activity gradient of the Dpp morphogen through regulation of thickveins, Development, 128 (2001), 67-74. |
[12] |
C. Han, T. Y. Belenkaya, M. Khodoun, M. Tauchi, X. D. Lin and X. H. Lin, Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation, Development, 131 (2004), 1563-1575.
doi: 10.1242/dev.01051. |
[13] |
B. Houchmandzadeh, E. Wieschaus and S. Leibler, Establishment of developmental precision and proportions in the early Drosophila embryo, Nature, 415 (2002), 798-802. |
[14] |
N. T. Ingolia, Topology and robustnessin the Drosophila segment polarity network, PLoS Biol., 2(2004), 0805-0815. |
[15] |
M. Khong, F. Y. M. Wan, Negative feedback in morphogen gradients, Frontiers of Applied Mathematics (Proc. of 2nd International Symposium, June, 2006, Beijing), Ed. D.-Y. Hsieh, M. Zhang and W. Sun, World Scientific, NJ, 2007, 29-51. |
[16] |
C. A. Kirkpatrick, B. D. Dimitroff, J. M. Rawson and S. B. Selleck, Spatial regulation of Wingless morphogen distribution and signaling by Dally-like protein, Dev. Cell, 7 (2004), 513-523.
doi: 10.1016/j.devcel.2004.08.004. |
[17] |
J. Kreuger, L. Perez, A. J. Giraldez and S. M. Choen, Opposing activities of Dally-like glypican at high and low levels of Wingless morphogen activity, Dev. Cell, 7 (2004), 503-512.
doi: 10.1016/j.devcel.2004.08.005. |
[18] |
A. D. Lander, Q. Nie and F. Y. M. Wan, Do morphogen gradients arise by diffusion? Dev. Cell, 2 (2002), 785-796.
doi: 10.1016/S1534-5807(02)00179-X. |
[19] |
A. D. Lander, Q. Nie and F. Y. M. Wan, Spatially distributed morphogen production and morphogen gradient formation, Math. Biosci. & Eng., 2 (2005), 239-262. |
[20] |
A. D. Lander, F. Y. M. Wan and Q. Nie, Multiple paths to morphogen gradient robustness, preprint, (2005). |
[21] |
A. D. Lander, Q. Nie, B. Vargas and F. Y. M. Wan, Size-normalized robustness of Dpp gradient in drosophila wing imaginal disc, J. Mech. Mat. Struct. Accepted, (2010). |
[22] |
T. Lecuit and S. M. Cohen, Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc, Development, 125 (1998), 4901-4907. |
[23] |
J. Lei, Mathematical model of the Dpp gradient formation in drosophila wing imaginal disc, Chinese Sci. Bull., 55 (2010), 984-991.
doi: 10.1360/972009-1522. |
[24] |
J. Lei and Y. Song, Mathematical model of the formation of morphogen gradients through membrane-associated non-receptors, Bull. Math. Biol., 72 (2010), 805-829.
doi: 10.1007/s11538-009-9470-2. |
[25] |
X. Lin, Functions of heparan sulfate proteoglygans in cell signaling during development, Development, 131 (2004), 6009-6021.
doi: doi:10.1242/dev.01522. |
[26] |
M. Renardy and R. C. Rogers, "An Introduction to Partial Differential Equation,'' Springer, Berlin, 2004. |
[27] |
D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana University Math. J., 21 (1972), 979-1000.
doi: 10.1512/iumj.1972.21.21079. |
[28] |
M. Strigini and S. M. Cohen, Wingless gradient formation in the Drosophila wing, Curr. Biol., 10 (2000), 293-300.
doi: 10.1016/S0960-9822(00)00378-X. |
[29] |
A. A. Teleman and S. M. Cohen, Dpp Gradient formation in the Drosophila wing imaginal disc, Cell, 103 (2000), 971-980.
doi: 10.1016/S0092-8674(00)00199-9. |
[30] |
I. The, Y. Bellaiche and N. Perrimon, Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteglycan, Mol. Cell, 4 (1999), 633-639.
doi: 10.1016/S1097-2765(00)80214-2. |
[31] |
G. von Dassow, E. Meir, E. M. Munro and G. M. Odell, The segment polarity network is a robust developmental module, Nature, 406 (2000), 188-192.
doi: 10.1038/35018085. |
[32] |
G. von Dassow, and G. M. Odell, Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches, J. Exp. Zool., 294 (2002), 179-215.
doi: 10.1002/jez.10144. |
show all references
References:
[1] |
G. H. Baeg and N. Perrimon, Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila, Curr. Opin. Cell. Biol., 12 (2000), 575-580.
doi: 10.1016/S0955-0674(00)00134-4. |
[2] |
G. H. Baeg, E. M. Selva, R. M. Goodman, R. Dasgupta and N. Perrimon, The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors, Dev. Biol., 276 (2004), 89-100.
doi: 10.1016/j.ydbio.2004.08.023. |
[3] |
T. Y. Belenkaya, C. Han, D. Yan, R. J. Opoka, M. Khodoun, H. Liu, and X. Lin, Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans, Cell, 119 (2004), 231-244.
doi: 10.1016/j.cell.2004.09.031. |
[4] |
D. J. Bornemann, J. E. Duncan, W. Staatz, S. Seleck and R. Warrior, Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, hedgehog and Decapentaplegic signaling pathways, Development, 131 (2004), 1927-1938.
doi: 10.1242/dev.01061. |
[5] |
K. M. Cadigan, M. P. Fish, E. J. Rulifson and R. Nusse, Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing, Cell, 93 (1998), 767-777.
doi: 10.1016/S0092-8674(00)81438-5. |
[6] |
A. Eldar, R. Dorfman, D. Weiss, H. Ashe, B. Z. Shilo and N. Barkai, Robustness of MmP morphogen gradient in Drosophila embryonic patterning, Nature, 419 (2002), 304-308.
doi: 10.1038/nature01061. |
[7] |
A. Eldar, D. Rosin, B. Z. Shilo and N. Barkai, Self-enhanced ligand degradation underlies robustness of morphogen graients, Dev. Cell, 5 (2003), 635-646.
doi: 10.1016/S1534-5807(03)00292-2. |
[8] |
A. Eldar, B. Z. Shilo and N. Barkai, Elucidating mechanisms underlying robustness of morphogen gradients, Curr. Opin. Genet. Dev., 14 (2004), 435-439. |
[9] |
E. V. Entchev, A. Schwabedissen and M. Gonzá lez-Gaitán, Grandient formation of the TGF-$\beta$ homolog dpp, Cell, 103 (2000), 981-991.
doi: 10.1016/S0092-8674(00)00200-2. |
[10] |
M. Fujise, S. Takeo, K. Kamimura, T. Matsuo, T. Aigaki, S. Izumi and H. Nakato, Dally regulates Dpp morphogen gradient formation in the Drosophila wing, Development, 130 (2003), 1515-1522.
doi: 10.1242/dev.00379. |
[11] |
Y. Funakoshi, M. Minami and T. Tabata, Mtv shapes the activity gradient of the Dpp morphogen through regulation of thickveins, Development, 128 (2001), 67-74. |
[12] |
C. Han, T. Y. Belenkaya, M. Khodoun, M. Tauchi, X. D. Lin and X. H. Lin, Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation, Development, 131 (2004), 1563-1575.
doi: 10.1242/dev.01051. |
[13] |
B. Houchmandzadeh, E. Wieschaus and S. Leibler, Establishment of developmental precision and proportions in the early Drosophila embryo, Nature, 415 (2002), 798-802. |
[14] |
N. T. Ingolia, Topology and robustnessin the Drosophila segment polarity network, PLoS Biol., 2(2004), 0805-0815. |
[15] |
M. Khong, F. Y. M. Wan, Negative feedback in morphogen gradients, Frontiers of Applied Mathematics (Proc. of 2nd International Symposium, June, 2006, Beijing), Ed. D.-Y. Hsieh, M. Zhang and W. Sun, World Scientific, NJ, 2007, 29-51. |
[16] |
C. A. Kirkpatrick, B. D. Dimitroff, J. M. Rawson and S. B. Selleck, Spatial regulation of Wingless morphogen distribution and signaling by Dally-like protein, Dev. Cell, 7 (2004), 513-523.
doi: 10.1016/j.devcel.2004.08.004. |
[17] |
J. Kreuger, L. Perez, A. J. Giraldez and S. M. Choen, Opposing activities of Dally-like glypican at high and low levels of Wingless morphogen activity, Dev. Cell, 7 (2004), 503-512.
doi: 10.1016/j.devcel.2004.08.005. |
[18] |
A. D. Lander, Q. Nie and F. Y. M. Wan, Do morphogen gradients arise by diffusion? Dev. Cell, 2 (2002), 785-796.
doi: 10.1016/S1534-5807(02)00179-X. |
[19] |
A. D. Lander, Q. Nie and F. Y. M. Wan, Spatially distributed morphogen production and morphogen gradient formation, Math. Biosci. & Eng., 2 (2005), 239-262. |
[20] |
A. D. Lander, F. Y. M. Wan and Q. Nie, Multiple paths to morphogen gradient robustness, preprint, (2005). |
[21] |
A. D. Lander, Q. Nie, B. Vargas and F. Y. M. Wan, Size-normalized robustness of Dpp gradient in drosophila wing imaginal disc, J. Mech. Mat. Struct. Accepted, (2010). |
[22] |
T. Lecuit and S. M. Cohen, Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc, Development, 125 (1998), 4901-4907. |
[23] |
J. Lei, Mathematical model of the Dpp gradient formation in drosophila wing imaginal disc, Chinese Sci. Bull., 55 (2010), 984-991.
doi: 10.1360/972009-1522. |
[24] |
J. Lei and Y. Song, Mathematical model of the formation of morphogen gradients through membrane-associated non-receptors, Bull. Math. Biol., 72 (2010), 805-829.
doi: 10.1007/s11538-009-9470-2. |
[25] |
X. Lin, Functions of heparan sulfate proteoglygans in cell signaling during development, Development, 131 (2004), 6009-6021.
doi: doi:10.1242/dev.01522. |
[26] |
M. Renardy and R. C. Rogers, "An Introduction to Partial Differential Equation,'' Springer, Berlin, 2004. |
[27] |
D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana University Math. J., 21 (1972), 979-1000.
doi: 10.1512/iumj.1972.21.21079. |
[28] |
M. Strigini and S. M. Cohen, Wingless gradient formation in the Drosophila wing, Curr. Biol., 10 (2000), 293-300.
doi: 10.1016/S0960-9822(00)00378-X. |
[29] |
A. A. Teleman and S. M. Cohen, Dpp Gradient formation in the Drosophila wing imaginal disc, Cell, 103 (2000), 971-980.
doi: 10.1016/S0092-8674(00)00199-9. |
[30] |
I. The, Y. Bellaiche and N. Perrimon, Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteglycan, Mol. Cell, 4 (1999), 633-639.
doi: 10.1016/S1097-2765(00)80214-2. |
[31] |
G. von Dassow, E. Meir, E. M. Munro and G. M. Odell, The segment polarity network is a robust developmental module, Nature, 406 (2000), 188-192.
doi: 10.1038/35018085. |
[32] |
G. von Dassow, and G. M. Odell, Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches, J. Exp. Zool., 294 (2002), 179-215.
doi: 10.1002/jez.10144. |
[1] |
Wing-Cheong Lo. Morphogen gradient with expansion-repression mechanism: Steady-state and robustness studies. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 775-787. doi: 10.3934/dcdsb.2014.19.775 |
[2] |
Arthur D. Lander, Qing Nie, Frederic Y. M. Wan. Spatially Distributed Morphogen Production and Morphogen Gradient Formation. Mathematical Biosciences & Engineering, 2005, 2 (2) : 239-262. doi: 10.3934/mbe.2005.2.239 |
[3] |
Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084 |
[4] |
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 |
[5] |
Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 89-99. doi: 10.3934/proc.1998.1998.89 |
[6] |
John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276 |
[7] |
Kateryna Marynets. Study of a nonlinear boundary-value problem of geophysical relevance. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4771-4781. doi: 10.3934/dcds.2019194 |
[8] |
Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 157-164. doi: 10.3934/naco.2019045 |
[9] |
Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416 |
[10] |
Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234 |
[11] |
Hideo Takaoka. Energy transfer model and large periodic boundary value problem for the quintic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6351-6378. doi: 10.3934/dcds.2020283 |
[12] |
Lisa Hollman, P. J. McKenna. A conjecture on multiple solutions of a nonlinear elliptic boundary value problem: some numerical evidence. Communications on Pure and Applied Analysis, 2011, 10 (2) : 785-802. doi: 10.3934/cpaa.2011.10.785 |
[13] |
VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure and Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003 |
[14] |
Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205 |
[15] |
Jinzhi Lei, Dongyong Wang, You Song, Qing Nie, Frederic Y. M. Wan. Robustness of Morphogen gradients with "bucket brigade" transport through membrane-associated non-receptors. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 721-739. doi: 10.3934/dcdsb.2013.18.721 |
[16] |
Rubén Caballero, Alexandre N. Carvalho, Pedro Marín-Rubio, José Valero. Robustness of dynamically gradient multivalued dynamical systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1049-1077. doi: 10.3934/dcdsb.2019006 |
[17] |
Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760 |
[18] |
Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851 |
[19] |
John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83 |
[20] |
Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]