-
Previous Article
Long time behavior of some epidemic models
- DCDS-B Home
- This Issue
-
Next Article
Front propagation in diffusion-aggregation models with bi-stable reaction
Robustness of signaling gradient in drosophila wing imaginal disc
1. | Zhou Pei-Yuan Center for Applied Mathematics, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084 |
2. | Department of Mathematics, Center for Complex Biological Systems, University of California, Irvine, California, 92697-3875 |
3. | Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California, 92697-2300, United States |
4. | Department of Mathematics, Center for Complex Biological Systems & Center for Mathematical and Computational Biology, University of California, Irvine, California, 92697-3875, United States |
References:
[1] |
G. H. Baeg and N. Perrimon, Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila,, Curr. Opin. Cell. Biol., 12 (2000), 575.
doi: 10.1016/S0955-0674(00)00134-4. |
[2] |
G. H. Baeg, E. M. Selva, R. M. Goodman, R. Dasgupta and N. Perrimon, The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors,, Dev. Biol., 276 (2004), 89.
doi: 10.1016/j.ydbio.2004.08.023. |
[3] |
T. Y. Belenkaya, C. Han, D. Yan, R. J. Opoka, M. Khodoun, H. Liu, and X. Lin, Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans,, Cell, 119 (2004), 231.
doi: 10.1016/j.cell.2004.09.031. |
[4] |
D. J. Bornemann, J. E. Duncan, W. Staatz, S. Seleck and R. Warrior, Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, hedgehog and Decapentaplegic signaling pathways,, Development, 131 (2004), 1927.
doi: 10.1242/dev.01061. |
[5] |
K. M. Cadigan, M. P. Fish, E. J. Rulifson and R. Nusse, Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing,, Cell, 93 (1998), 767.
doi: 10.1016/S0092-8674(00)81438-5. |
[6] |
A. Eldar, R. Dorfman, D. Weiss, H. Ashe, B. Z. Shilo and N. Barkai, Robustness of MmP morphogen gradient in Drosophila embryonic patterning,, Nature, 419 (2002), 304.
doi: 10.1038/nature01061. |
[7] |
A. Eldar, D. Rosin, B. Z. Shilo and N. Barkai, Self-enhanced ligand degradation underlies robustness of morphogen graients,, Dev. Cell, 5 (2003), 635.
doi: 10.1016/S1534-5807(03)00292-2. |
[8] |
A. Eldar, B. Z. Shilo and N. Barkai, Elucidating mechanisms underlying robustness of morphogen gradients,, Curr. Opin. Genet. Dev., 14 (2004), 435. Google Scholar |
[9] |
E. V. Entchev, A. Schwabedissen and M. Gonzá lez-Gaitán, Grandient formation of the TGF-$\beta$ homolog dpp,, Cell, 103 (2000), 981.
doi: 10.1016/S0092-8674(00)00200-2. |
[10] |
M. Fujise, S. Takeo, K. Kamimura, T. Matsuo, T. Aigaki, S. Izumi and H. Nakato, Dally regulates Dpp morphogen gradient formation in the Drosophila wing,, Development, 130 (2003), 1515.
doi: 10.1242/dev.00379. |
[11] |
Y. Funakoshi, M. Minami and T. Tabata, Mtv shapes the activity gradient of the Dpp morphogen through regulation of thickveins,, Development, 128 (2001), 67. Google Scholar |
[12] |
C. Han, T. Y. Belenkaya, M. Khodoun, M. Tauchi, X. D. Lin and X. H. Lin, Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation,, Development, 131 (2004), 1563.
doi: 10.1242/dev.01051. |
[13] |
B. Houchmandzadeh, E. Wieschaus and S. Leibler, Establishment of developmental precision and proportions in the early Drosophila embryo,, Nature, 415 (2002), 798. Google Scholar |
[14] |
N. T. Ingolia, Topology and robustnessin the Drosophila segment polarity network,, PLoS Biol., 2 (2004), 0805. Google Scholar |
[15] |
M. Khong, F. Y. M. Wan, Negative feedback in morphogen gradients,, Frontiers of Applied Mathematics, (2006), 29. Google Scholar |
[16] |
C. A. Kirkpatrick, B. D. Dimitroff, J. M. Rawson and S. B. Selleck, Spatial regulation of Wingless morphogen distribution and signaling by Dally-like protein,, Dev. Cell, 7 (2004), 513.
doi: 10.1016/j.devcel.2004.08.004. |
[17] |
J. Kreuger, L. Perez, A. J. Giraldez and S. M. Choen, Opposing activities of Dally-like glypican at high and low levels of Wingless morphogen activity,, Dev. Cell, 7 (2004), 503.
doi: 10.1016/j.devcel.2004.08.005. |
[18] |
A. D. Lander, Q. Nie and F. Y. M. Wan, Do morphogen gradients arise by diffusion?, Dev. Cell, 2 (2002), 785.
doi: 10.1016/S1534-5807(02)00179-X. |
[19] |
A. D. Lander, Q. Nie and F. Y. M. Wan, Spatially distributed morphogen production and morphogen gradient formation,, Math. Biosci. & Eng., 2 (2005), 239.
|
[20] |
A. D. Lander, F. Y. M. Wan and Q. Nie, Multiple paths to morphogen gradient robustness,, preprint, (2005). Google Scholar |
[21] |
A. D. Lander, Q. Nie, B. Vargas and F. Y. M. Wan, Size-normalized robustness of Dpp gradient in drosophila wing imaginal disc,, J. Mech. Mat. Struct. Accepted, (2010). Google Scholar |
[22] |
T. Lecuit and S. M. Cohen, Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc,, Development, 125 (1998), 4901. Google Scholar |
[23] |
J. Lei, Mathematical model of the Dpp gradient formation in drosophila wing imaginal disc,, Chinese Sci. Bull., 55 (2010), 984.
doi: 10.1360/972009-1522. |
[24] |
J. Lei and Y. Song, Mathematical model of the formation of morphogen gradients through membrane-associated non-receptors,, Bull. Math. Biol., 72 (2010), 805.
doi: 10.1007/s11538-009-9470-2. |
[25] |
X. Lin, Functions of heparan sulfate proteoglygans in cell signaling during development,, Development, 131 (2004), 6009.
doi: doi:10.1242/dev.01522. |
[26] |
M. Renardy and R. C. Rogers, "An Introduction to Partial Differential Equation,'', An Introduction to Partial Differential Equation, (2004).
|
[27] |
D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems,, Indiana University Math. J., 21 (1972), 979.
doi: 10.1512/iumj.1972.21.21079. |
[28] |
M. Strigini and S. M. Cohen, Wingless gradient formation in the Drosophila wing,, Curr. Biol., 10 (2000), 293.
doi: 10.1016/S0960-9822(00)00378-X. |
[29] |
A. A. Teleman and S. M. Cohen, Dpp Gradient formation in the Drosophila wing imaginal disc,, Cell, 103 (2000), 971.
doi: 10.1016/S0092-8674(00)00199-9. |
[30] |
I. The, Y. Bellaiche and N. Perrimon, Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteglycan,, Mol. Cell, 4 (1999), 633.
doi: 10.1016/S1097-2765(00)80214-2. |
[31] |
G. von Dassow, E. Meir, E. M. Munro and G. M. Odell, The segment polarity network is a robust developmental module,, Nature, 406 (2000), 188.
doi: 10.1038/35018085. |
[32] |
G. von Dassow, and G. M. Odell, Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches,, J. Exp. Zool., 294 (2002), 179.
doi: 10.1002/jez.10144. |
show all references
References:
[1] |
G. H. Baeg and N. Perrimon, Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila,, Curr. Opin. Cell. Biol., 12 (2000), 575.
doi: 10.1016/S0955-0674(00)00134-4. |
[2] |
G. H. Baeg, E. M. Selva, R. M. Goodman, R. Dasgupta and N. Perrimon, The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors,, Dev. Biol., 276 (2004), 89.
doi: 10.1016/j.ydbio.2004.08.023. |
[3] |
T. Y. Belenkaya, C. Han, D. Yan, R. J. Opoka, M. Khodoun, H. Liu, and X. Lin, Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans,, Cell, 119 (2004), 231.
doi: 10.1016/j.cell.2004.09.031. |
[4] |
D. J. Bornemann, J. E. Duncan, W. Staatz, S. Seleck and R. Warrior, Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, hedgehog and Decapentaplegic signaling pathways,, Development, 131 (2004), 1927.
doi: 10.1242/dev.01061. |
[5] |
K. M. Cadigan, M. P. Fish, E. J. Rulifson and R. Nusse, Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing,, Cell, 93 (1998), 767.
doi: 10.1016/S0092-8674(00)81438-5. |
[6] |
A. Eldar, R. Dorfman, D. Weiss, H. Ashe, B. Z. Shilo and N. Barkai, Robustness of MmP morphogen gradient in Drosophila embryonic patterning,, Nature, 419 (2002), 304.
doi: 10.1038/nature01061. |
[7] |
A. Eldar, D. Rosin, B. Z. Shilo and N. Barkai, Self-enhanced ligand degradation underlies robustness of morphogen graients,, Dev. Cell, 5 (2003), 635.
doi: 10.1016/S1534-5807(03)00292-2. |
[8] |
A. Eldar, B. Z. Shilo and N. Barkai, Elucidating mechanisms underlying robustness of morphogen gradients,, Curr. Opin. Genet. Dev., 14 (2004), 435. Google Scholar |
[9] |
E. V. Entchev, A. Schwabedissen and M. Gonzá lez-Gaitán, Grandient formation of the TGF-$\beta$ homolog dpp,, Cell, 103 (2000), 981.
doi: 10.1016/S0092-8674(00)00200-2. |
[10] |
M. Fujise, S. Takeo, K. Kamimura, T. Matsuo, T. Aigaki, S. Izumi and H. Nakato, Dally regulates Dpp morphogen gradient formation in the Drosophila wing,, Development, 130 (2003), 1515.
doi: 10.1242/dev.00379. |
[11] |
Y. Funakoshi, M. Minami and T. Tabata, Mtv shapes the activity gradient of the Dpp morphogen through regulation of thickveins,, Development, 128 (2001), 67. Google Scholar |
[12] |
C. Han, T. Y. Belenkaya, M. Khodoun, M. Tauchi, X. D. Lin and X. H. Lin, Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation,, Development, 131 (2004), 1563.
doi: 10.1242/dev.01051. |
[13] |
B. Houchmandzadeh, E. Wieschaus and S. Leibler, Establishment of developmental precision and proportions in the early Drosophila embryo,, Nature, 415 (2002), 798. Google Scholar |
[14] |
N. T. Ingolia, Topology and robustnessin the Drosophila segment polarity network,, PLoS Biol., 2 (2004), 0805. Google Scholar |
[15] |
M. Khong, F. Y. M. Wan, Negative feedback in morphogen gradients,, Frontiers of Applied Mathematics, (2006), 29. Google Scholar |
[16] |
C. A. Kirkpatrick, B. D. Dimitroff, J. M. Rawson and S. B. Selleck, Spatial regulation of Wingless morphogen distribution and signaling by Dally-like protein,, Dev. Cell, 7 (2004), 513.
doi: 10.1016/j.devcel.2004.08.004. |
[17] |
J. Kreuger, L. Perez, A. J. Giraldez and S. M. Choen, Opposing activities of Dally-like glypican at high and low levels of Wingless morphogen activity,, Dev. Cell, 7 (2004), 503.
doi: 10.1016/j.devcel.2004.08.005. |
[18] |
A. D. Lander, Q. Nie and F. Y. M. Wan, Do morphogen gradients arise by diffusion?, Dev. Cell, 2 (2002), 785.
doi: 10.1016/S1534-5807(02)00179-X. |
[19] |
A. D. Lander, Q. Nie and F. Y. M. Wan, Spatially distributed morphogen production and morphogen gradient formation,, Math. Biosci. & Eng., 2 (2005), 239.
|
[20] |
A. D. Lander, F. Y. M. Wan and Q. Nie, Multiple paths to morphogen gradient robustness,, preprint, (2005). Google Scholar |
[21] |
A. D. Lander, Q. Nie, B. Vargas and F. Y. M. Wan, Size-normalized robustness of Dpp gradient in drosophila wing imaginal disc,, J. Mech. Mat. Struct. Accepted, (2010). Google Scholar |
[22] |
T. Lecuit and S. M. Cohen, Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc,, Development, 125 (1998), 4901. Google Scholar |
[23] |
J. Lei, Mathematical model of the Dpp gradient formation in drosophila wing imaginal disc,, Chinese Sci. Bull., 55 (2010), 984.
doi: 10.1360/972009-1522. |
[24] |
J. Lei and Y. Song, Mathematical model of the formation of morphogen gradients through membrane-associated non-receptors,, Bull. Math. Biol., 72 (2010), 805.
doi: 10.1007/s11538-009-9470-2. |
[25] |
X. Lin, Functions of heparan sulfate proteoglygans in cell signaling during development,, Development, 131 (2004), 6009.
doi: doi:10.1242/dev.01522. |
[26] |
M. Renardy and R. C. Rogers, "An Introduction to Partial Differential Equation,'', An Introduction to Partial Differential Equation, (2004).
|
[27] |
D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems,, Indiana University Math. J., 21 (1972), 979.
doi: 10.1512/iumj.1972.21.21079. |
[28] |
M. Strigini and S. M. Cohen, Wingless gradient formation in the Drosophila wing,, Curr. Biol., 10 (2000), 293.
doi: 10.1016/S0960-9822(00)00378-X. |
[29] |
A. A. Teleman and S. M. Cohen, Dpp Gradient formation in the Drosophila wing imaginal disc,, Cell, 103 (2000), 971.
doi: 10.1016/S0092-8674(00)00199-9. |
[30] |
I. The, Y. Bellaiche and N. Perrimon, Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteglycan,, Mol. Cell, 4 (1999), 633.
doi: 10.1016/S1097-2765(00)80214-2. |
[31] |
G. von Dassow, E. Meir, E. M. Munro and G. M. Odell, The segment polarity network is a robust developmental module,, Nature, 406 (2000), 188.
doi: 10.1038/35018085. |
[32] |
G. von Dassow, and G. M. Odell, Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches,, J. Exp. Zool., 294 (2002), 179.
doi: 10.1002/jez.10144. |
[1] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[2] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[3] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[4] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[5] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[6] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[7] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[8] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[9] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[10] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[11] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[12] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[13] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[14] |
Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311 |
[15] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[16] |
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
[17] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[18] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
[19] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020453 |
[20] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]