October  2011, 16(3): 867-881. doi: 10.3934/dcdsb.2011.16.867

Long time behavior of some epidemic models

1. 

Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN 47907, United States

Received  August 2010 Revised  March 2011 Published  June 2011

In this paper, we prove two results concerning the long time behavior of two systems of reaction diffusion equations motivated by the S-I-R model in epidemic modeling. The results generalize and simplify previous approaches. In particular, we consider the presence of directed diffusions between the two species. The new system contains an ill-posed region for arbitrary parameters. Our result is established under the assumption of small initial data.
Citation: Fang Li, Nung Kwan Yip. Long time behavior of some epidemic models. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 867-881. doi: 10.3934/dcdsb.2011.16.867
References:
[1]

S. Busenberg and C. Castillo-Chavez, Interaction, pair formation and force of infection terms in sexually transmitted diseases, Mathematical and Statistical Approaches to AIDS Epidemiology, 289-300, Lecture Notes in Biomath., 83, Springer, Berlin, 1989.

[2]

C. Castillo-Chavez and H. R. Thieme, On the role of variable infectivity in the dynamics of the human immunodeficiency virus epidemic, Mathematical and Statistical Approaches to AIDS Epidemiology, 157-176, Lecture Notes in Biomath., 83, Springer, Berlin, 1989.

[3]

P. C. Fife, Asymptotic States for Equations of Reaction and Diffusion, Bull. AMS, 84 (1978), 693-726. doi: 10.1090/S0002-9904-1978-14502-9.

[4]

M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations, Math. Biosci., 33 (1977), 35-49. doi: 10.1016/0025-5564(77)90062-1.

[5]

W. S. C. Gurney and R. M. Nisbet, The Regulation of Inhomogeneous Populations, J. Theor. Biol., 52 (1975), 441-457. doi: 10.1016/0022-5193(75)90011-9.

[6]

M. Iannelli, R. Loro, F. A. Milner, A. Pugliese and G. Rabbiolo, An AIDS model with distributed incubation and variable infectiousness: applications to i.v. drug users in Latium, Italy, Eur. J. Epidemiol., 8 (1992), 585-593. doi: 10.1007/BF00146381.

[7]

W. O. Kermack and A. G. McKendrick, A Contribution to the Mathematical Theory of Epidemics, Proc. Roy. Soc. Lond. A, 115 (1927), 700-721 doi: 10.1098/rspa.1927.0118.

[8]

T. G. Kurtz and J. Xiong, Particle representation for a class of nonlinear SPDEs, Stoch. Proc. and Their Appl., 83 (1999), 103-126. doi: 10.1016/S0304-4149(99)00024-1.

[9]

F. A. Milner and R. Zhao, S-I-R Model with Directed Spatial Diffusion, Mathematical Population Studies, 15 (2008), 160-181. doi: 10.1080/08898480802221889.

[10]

M. Mimura and M. Yamaguti, Pattern formation in interacting and diffusing systems in population biology, Adv. Biophys., 15 (1982), 19-65. doi: 10.1016/0065-227X(82)90004-1.

[11]

B. K. Oksendal, "Stochastic Differential Equations: An Introduction with Applications," 6th edition, Springer-Verlag, Berlin, 2003.

[12]

G. F. Webb, A reaction-diffusion model for a deterministic diffusive epidemic, J. Math. Anal. Appl., 84 (1981), 150-161. doi: 10.1016/0022-247X(81)90156-6.

show all references

References:
[1]

S. Busenberg and C. Castillo-Chavez, Interaction, pair formation and force of infection terms in sexually transmitted diseases, Mathematical and Statistical Approaches to AIDS Epidemiology, 289-300, Lecture Notes in Biomath., 83, Springer, Berlin, 1989.

[2]

C. Castillo-Chavez and H. R. Thieme, On the role of variable infectivity in the dynamics of the human immunodeficiency virus epidemic, Mathematical and Statistical Approaches to AIDS Epidemiology, 157-176, Lecture Notes in Biomath., 83, Springer, Berlin, 1989.

[3]

P. C. Fife, Asymptotic States for Equations of Reaction and Diffusion, Bull. AMS, 84 (1978), 693-726. doi: 10.1090/S0002-9904-1978-14502-9.

[4]

M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations, Math. Biosci., 33 (1977), 35-49. doi: 10.1016/0025-5564(77)90062-1.

[5]

W. S. C. Gurney and R. M. Nisbet, The Regulation of Inhomogeneous Populations, J. Theor. Biol., 52 (1975), 441-457. doi: 10.1016/0022-5193(75)90011-9.

[6]

M. Iannelli, R. Loro, F. A. Milner, A. Pugliese and G. Rabbiolo, An AIDS model with distributed incubation and variable infectiousness: applications to i.v. drug users in Latium, Italy, Eur. J. Epidemiol., 8 (1992), 585-593. doi: 10.1007/BF00146381.

[7]

W. O. Kermack and A. G. McKendrick, A Contribution to the Mathematical Theory of Epidemics, Proc. Roy. Soc. Lond. A, 115 (1927), 700-721 doi: 10.1098/rspa.1927.0118.

[8]

T. G. Kurtz and J. Xiong, Particle representation for a class of nonlinear SPDEs, Stoch. Proc. and Their Appl., 83 (1999), 103-126. doi: 10.1016/S0304-4149(99)00024-1.

[9]

F. A. Milner and R. Zhao, S-I-R Model with Directed Spatial Diffusion, Mathematical Population Studies, 15 (2008), 160-181. doi: 10.1080/08898480802221889.

[10]

M. Mimura and M. Yamaguti, Pattern formation in interacting and diffusing systems in population biology, Adv. Biophys., 15 (1982), 19-65. doi: 10.1016/0065-227X(82)90004-1.

[11]

B. K. Oksendal, "Stochastic Differential Equations: An Introduction with Applications," 6th edition, Springer-Verlag, Berlin, 2003.

[12]

G. F. Webb, A reaction-diffusion model for a deterministic diffusive epidemic, J. Math. Anal. Appl., 84 (1981), 150-161. doi: 10.1016/0022-247X(81)90156-6.

[1]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[2]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2201-2238. doi: 10.3934/dcdsb.2020360

[3]

Arthur Henrique Caixeta, Irena Lasiecka, Valéria Neves Domingos Cavalcanti. On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation. Evolution Equations and Control Theory, 2016, 5 (4) : 661-676. doi: 10.3934/eect.2016024

[4]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure and Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[5]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

[6]

Yang Liu. Long-time behavior of a class of viscoelastic plate equations. Electronic Research Archive, 2020, 28 (1) : 311-326. doi: 10.3934/era.2020018

[7]

Shoshana Kamin, Guillermo Reyes, Juan Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 521-549. doi: 10.3934/dcds.2010.26.521

[8]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[9]

Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509

[10]

Shan Ma, Chunyou Sun. Long-time behavior for a class of weighted equations with degeneracy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1889-1902. doi: 10.3934/dcds.2020098

[11]

Laurence Cherfils, Stefania Gatti, Alain Miranville. Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2261-2290. doi: 10.3934/cpaa.2012.11.2261

[12]

Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105

[13]

Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041

[14]

Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873

[15]

Eduard Feireisl. Long time behavior and attractors for energetically insulated fluid systems. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1587-1609. doi: 10.3934/dcds.2010.27.1587

[16]

Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272

[17]

Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112

[18]

Jiaohui Xu, Tomás Caraballo, José Valero. Asymptotic behavior of nonlocal partial differential equations with long time memory. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021140

[19]

Oscar Jarrín, Manuel Fernando Cortez. On the long-time behavior for a damped Navier-Stokes-Bardina model. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 3661-3707. doi: 10.3934/dcds.2022028

[20]

Igor Chueshov, Stanislav Kolbasin. Long-time dynamics in plate models with strong nonlinear damping. Communications on Pure and Applied Analysis, 2012, 11 (2) : 659-674. doi: 10.3934/cpaa.2012.11.659

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]