-
Previous Article
Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology
- DCDS-B Home
- This Issue
-
Next Article
Long time behavior of some epidemic models
Phase transitions of a phase field model
1. | Department of Mathematics, Indiana University, Bloomington, IN 47405, United States |
References:
[1] |
J. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258.
doi: 10.1063/1.1744102. |
[2] |
C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation,, in, (1989), 35.
|
[3] |
M. E. Gurtin, D. Polignone and J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter,, Math. Models Methods Appl. Sci., 6 (1996), 815.
doi: 10.1142/S0218202596000341. |
[4] |
P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena,, Rev. Mod. Phys., 49 (1977), 435.
doi: 10.1103/RevModPhys.49.435. |
[5] |
C. Hsia, Bifurcation of binary systems with the Onsager mobility,, J. Math. Phys., 51 (2010).
doi: 10.1063/1.3406383. |
[6] |
C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method,, Physica D, 179 (2003), 211.
doi: 10.1016/S0167-2789(03)00030-7. |
[7] |
T. Ma and S. Wang, "Phase Transition Dynamics in Nonlinear Sciences,", to appear., (). Google Scholar |
[8] |
T. Ma and S. Wang, "Bifurcation Theory and Applications,", vol. 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, (2005).
|
[9] |
T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems,, Disc. Cont. Dyn. Sys. B, 11 (2009), 741.
doi: 10.3934/dcdsb.2009.11.741. |
[10] |
T. Ma and S. Wang, Phase separation of binary systems,, Physica A, 388 (2009), 4811.
doi: 10.1016/j.physa.2009.07.044. |
[11] |
A. Miranville, Some generalizations of the Cahn-Hilliard equation,, Asymptotic Anal., 22 (2000), 235.
|
[12] |
A. Novich-Cohen and L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation,, Physica D, 10 (1984), 277.
doi: 10.1016/0167-2789(84)90180-5. |
[13] |
X. P. Wang and Y. G. Wang, The sharp interface limit of a phase field model for moving contact line problem,, Methods Appl. Anal., 14 (2007), 287.
|
show all references
References:
[1] |
J. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258.
doi: 10.1063/1.1744102. |
[2] |
C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation,, in, (1989), 35.
|
[3] |
M. E. Gurtin, D. Polignone and J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter,, Math. Models Methods Appl. Sci., 6 (1996), 815.
doi: 10.1142/S0218202596000341. |
[4] |
P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena,, Rev. Mod. Phys., 49 (1977), 435.
doi: 10.1103/RevModPhys.49.435. |
[5] |
C. Hsia, Bifurcation of binary systems with the Onsager mobility,, J. Math. Phys., 51 (2010).
doi: 10.1063/1.3406383. |
[6] |
C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method,, Physica D, 179 (2003), 211.
doi: 10.1016/S0167-2789(03)00030-7. |
[7] |
T. Ma and S. Wang, "Phase Transition Dynamics in Nonlinear Sciences,", to appear., (). Google Scholar |
[8] |
T. Ma and S. Wang, "Bifurcation Theory and Applications,", vol. 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, (2005).
|
[9] |
T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems,, Disc. Cont. Dyn. Sys. B, 11 (2009), 741.
doi: 10.3934/dcdsb.2009.11.741. |
[10] |
T. Ma and S. Wang, Phase separation of binary systems,, Physica A, 388 (2009), 4811.
doi: 10.1016/j.physa.2009.07.044. |
[11] |
A. Miranville, Some generalizations of the Cahn-Hilliard equation,, Asymptotic Anal., 22 (2000), 235.
|
[12] |
A. Novich-Cohen and L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation,, Physica D, 10 (1984), 277.
doi: 10.1016/0167-2789(84)90180-5. |
[13] |
X. P. Wang and Y. G. Wang, The sharp interface limit of a phase field model for moving contact line problem,, Methods Appl. Anal., 14 (2007), 287.
|
[1] |
Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423 |
[2] |
Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73 |
[3] |
Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741 |
[4] |
Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002 |
[5] |
Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019040 |
[6] |
T. Tachim Medjo. A Cahn-Hilliard-Navier-Stokes model with delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2663-2685. doi: 10.3934/dcdsb.2016067 |
[7] |
Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419 |
[8] |
Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397 |
[9] |
Qiang Du, Manlin Li, Chun Liu. Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 539-556. doi: 10.3934/dcdsb.2007.8.539 |
[10] |
T. Tachim Medjo. Robust control of a Cahn-Hilliard-Navier-Stokes model. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2075-2101. doi: 10.3934/cpaa.2016028 |
[11] |
Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157 |
[12] |
Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125 |
[13] |
Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275 |
[14] |
Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511 |
[15] |
Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881 |
[16] |
Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301 |
[17] |
Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132 |
[18] |
Bo You. Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2283-2298. doi: 10.3934/cpaa.2019103 |
[19] |
T. Tachim Medjo. The exponential behavior of a stochastic Cahn-Hilliard-Navier-Stokes model with multiplicative noise. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1117-1138. doi: 10.3934/cpaa.2019054 |
[20] |
M. Hassan Farshbaf-Shaker, Harald Garcke. Thermodynamically consistent higher order phase field Navier-Stokes models with applications to biomembranes. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 371-389. doi: 10.3934/dcdss.2011.4.371 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]