October  2011, 16(3): 883-894. doi: 10.3934/dcdsb.2011.16.883

Phase transitions of a phase field model

1. 

Department of Mathematics, Indiana University, Bloomington, IN 47405, United States

Received  July 2010 Revised  February 2011 Published  June 2011

We consider a phase field model for the mixture of two viscous incompressible uids with the same density. The model leads to a coupled Navier-Stokes/Cahn-Hilliard system. We explore the dynamics of the system near the critical point via a dynamic phase transition theory developed recently by Ma and Wang [7, 8]. Our analysis shows qualitatively the same phase transition result as the purely dissipative Cahn-Hilliard equation, which implies that the hydrodynamics does not play a role in the phase transition process of binary systems. This is different from the sharp interface situation, where numerical studies (see e.g. [3, 6]) suggest quite different behaviors between these two models.
Citation: Honghu Liu. Phase transitions of a phase field model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883
References:
[1]

J. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. doi: 10.1063/1.1744102.

[2]

C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, in "Mathematical Models for Phase Change Problems (Internat. Ser. Numer. Math. 88)" (eds. J. F. Rodriques), Birkhäuser-Verlag, Basel, Switzerland, (1989), 35-73.

[3]

M. E. Gurtin, D. Polignone and J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831. doi: 10.1142/S0218202596000341.

[4]

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys., 49 (1977), 435-479. doi: 10.1103/RevModPhys.49.435.

[5]

C. Hsia, Bifurcation of binary systems with the Onsager mobility, J. Math. Phys., 51 (2010), 063305. doi: 10.1063/1.3406383.

[6]

C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D, 179 (2003), 211-228. doi: 10.1016/S0167-2789(03)00030-7.

[7]

T. Ma and S. Wang, "Phase Transition Dynamics in Nonlinear Sciences," to appear.

[8]

T. Ma and S. Wang, "Bifurcation Theory and Applications," vol. 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.

[9]

T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems, Disc. Cont. Dyn. Sys. B, 11 (2009), 741-784. doi: 10.3934/dcdsb.2009.11.741.

[10]

T. Ma and S. Wang, Phase separation of binary systems, Physica A, 388 (2009), 4811-4817. doi: 10.1016/j.physa.2009.07.044.

[11]

A. Miranville, Some generalizations of the Cahn-Hilliard equation, Asymptotic Anal., 22 (2000), 235-259.

[12]

A. Novich-Cohen and L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10 (1984), 277-298. doi: 10.1016/0167-2789(84)90180-5.

[13]

X. P. Wang and Y. G. Wang, The sharp interface limit of a phase field model for moving contact line problem, Methods Appl. Anal., 14 (2007), 287-284.

show all references

References:
[1]

J. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. doi: 10.1063/1.1744102.

[2]

C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, in "Mathematical Models for Phase Change Problems (Internat. Ser. Numer. Math. 88)" (eds. J. F. Rodriques), Birkhäuser-Verlag, Basel, Switzerland, (1989), 35-73.

[3]

M. E. Gurtin, D. Polignone and J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831. doi: 10.1142/S0218202596000341.

[4]

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys., 49 (1977), 435-479. doi: 10.1103/RevModPhys.49.435.

[5]

C. Hsia, Bifurcation of binary systems with the Onsager mobility, J. Math. Phys., 51 (2010), 063305. doi: 10.1063/1.3406383.

[6]

C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D, 179 (2003), 211-228. doi: 10.1016/S0167-2789(03)00030-7.

[7]

T. Ma and S. Wang, "Phase Transition Dynamics in Nonlinear Sciences," to appear.

[8]

T. Ma and S. Wang, "Bifurcation Theory and Applications," vol. 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.

[9]

T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems, Disc. Cont. Dyn. Sys. B, 11 (2009), 741-784. doi: 10.3934/dcdsb.2009.11.741.

[10]

T. Ma and S. Wang, Phase separation of binary systems, Physica A, 388 (2009), 4811-4817. doi: 10.1016/j.physa.2009.07.044.

[11]

A. Miranville, Some generalizations of the Cahn-Hilliard equation, Asymptotic Anal., 22 (2000), 235-259.

[12]

A. Novich-Cohen and L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10 (1984), 277-298. doi: 10.1016/0167-2789(84)90180-5.

[13]

X. P. Wang and Y. G. Wang, The sharp interface limit of a phase field model for moving contact line problem, Methods Appl. Anal., 14 (2007), 287-284.

[1]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[2]

Quan Wang, Dongming Yan. On the stability and transition of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2607-2620. doi: 10.3934/dcdsb.2020024

[3]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73

[4]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[5]

Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control and Related Fields, 2020, 10 (2) : 305-331. doi: 10.3934/mcrf.2019040

[6]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002

[7]

Andrea Giorgini, Roger Temam. Attractors for the Navier-Stokes-Cahn-Hilliard system. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2249-2274. doi: 10.3934/dcdss.2022118

[8]

T. Tachim Medjo. A Cahn-Hilliard-Navier-Stokes model with delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2663-2685. doi: 10.3934/dcdsb.2016067

[9]

Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419

[10]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[11]

Qiang Du, Manlin Li, Chun Liu. Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 539-556. doi: 10.3934/dcdsb.2007.8.539

[12]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[13]

T. Tachim Medjo. Robust control of a Cahn-Hilliard-Navier-Stokes model. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2075-2101. doi: 10.3934/cpaa.2016028

[14]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

[15]

Alain Miranville, Ramon Quintanilla, Wafa Saoud. Asymptotic behavior of a Cahn-Hilliard/Allen-Cahn system with temperature. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2257-2288. doi: 10.3934/cpaa.2020099

[16]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[17]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[18]

Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511

[19]

Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881

[20]

Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]