October  2011, 16(3): 895-925. doi: 10.3934/dcdsb.2011.16.895

Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology

1. 

Dept. of Mathematics and Statistics, Georgetown University, Washington DC 20057, United States, United States

Received  June 2010 Revised  December 2010 Published  June 2011

We use spectral methods to prove a general stability theorem for traveling wave solutions to the systems of integrodifference equations arising in spatial population biology. We show that non-minimum-speed waves are exponentially asymptotically stable to small perturbations in appropriately weighted $L^\infty$ spaces, under assumptions which apply to examples including a Laplace or Gaussian dispersal kernel a monotone (or non-monotone) growth function behaving qualitatively like the Beverton-Holt function (or Ricker function with overcompensation), and a constant probability $p\in [0,1)$ (or $p=0$) of remaining sedentary for a single population; as well as to a system of two populations exhibiting non-cooperation (in particular, Hassell and Comins' model [6]) with $p=0$ and Laplace or Gaussian dispersal kernels which can be different for the two populations.
Citation: Judith R. Miller, Huihui Zeng. Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 895-925. doi: 10.3934/dcdsb.2011.16.895
References:
[1]

O. Diekmann and H. Kaper, On the bounded solutions of a nonlinear convolution equation,, Nonlinear Anal., 2 (1978), 721.  doi: 10.1016/0362-546X(78)90015-9.  Google Scholar

[2]

R. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[3]

M. Gil', "Difference Equations in Normed Spaces. Stability and Oscillations,", North-Holland Mathematics Studies 206, (2007).   Google Scholar

[4]

D. Hardin, P. Takac and G. Webb, A comparison of dispersal strategies for survival of spatially heterogeneous populations,, SIAM J. Appl. Math., 48 (1988), 1396.  doi: 10.1137/0148086.  Google Scholar

[5]

D. Hardin, P. Takac and G. Webb, Dispersion population models discrete in time and continuous in space,, J. Math. Biol., 28 (1990), 1.  doi: 10.1007/BF00171515.  Google Scholar

[6]

M. Hassell and H. Comins, Discrete time models for two-species competition,, Theoretical Population Biology, 9 (1976), 202.  doi: 10.1016/0040-5809(76)90045-9.  Google Scholar

[7]

S. Hsu and X. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.   Google Scholar

[8]

A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Éude de l'éuations de la diffusion avec crois-sance de la quantité de matièret son application a un problème biologique,, Bull. Univ. Moscow, 1 (1937), 1.   Google Scholar

[9]

M. Kot and W. Schaffer, Discrete-time growth-dispersal models,, Math. Biosci., 80 (1986), 109.  doi: 10.1016/0025-5564(86)90069-6.  Google Scholar

[10]

M. Kot, Discrete-time travelling waves: ecological examples,, J. Math. Biol., 30 (1992), 413.  doi: 10.1007/BF00173295.  Google Scholar

[11]

M. Kot, M. Lewis and P. van den Driessche, Dispersal data and the spread of invading organisms,, Ecology, 77 (1996), 2027.  doi: 10.2307/2265698.  Google Scholar

[12]

M. Lewis, B. Li and H. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[13]

B. Li, M. Lewis and H. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[14]

B. Li, H. Weinberger and M. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[15]

B. Li, Some remarks on traveling wave solutions in competition models,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 389.  doi: 10.3934/dcdsb.2009.12.389.  Google Scholar

[16]

G. Lin and W. Li, Spreading speeds and traveling wavefronts for second order integrodifference equations,, J. Math. Anal. Appl., 361 (2010), 520.  doi: 10.1016/j.jmaa.2009.07.035.  Google Scholar

[17]

R. Lui, A nonlinear integral operator arising from a model in population genetics. I. Monotone initial data,, SIAM J. Math. Anal., 13 (1982), 913.  doi: 10.1137/0513064.  Google Scholar

[18]

R. Lui, A nonlinear integral operator arising from a model in population genetics. II. Initial data with compact support,, SIAM J. Math. Anal., 13 (1982), 938.  doi: 10.1137/0513065.  Google Scholar

[19]

R. Lui, Existence and stability of travelling wave solutions of a nonlinear integral operator,, J. Math. Biol., 16 (): 199.   Google Scholar

[20]

R. Lui, A nonlinear integral operator arising from a model in population genetics. III. Heterozygote inferior case,, SIAM J. Math. Anal., 16 (1985), 1180.  doi: 10.1137/0516087.  Google Scholar

[21]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[22]

F. Lutscher, Density-dependent dispersal in integrodifference equations,, J. Math. Biol., 56 (2008), 499.  doi: 10.1007/s00285-007-0127-1.  Google Scholar

[23]

M. Neubert, M. Kot and M. Lewis, Dispersal and pattern-formation in a discrete-time predator-prey model,, Theoretical Population Biology, 48 (1995), 7.  doi: 10.1006/tpbi.1995.1020.  Google Scholar

[24]

S. Pan and G. Lin, Propagation of second order integrodifference equations with local monotonicity,, Nonlinear Anal. RWA, 12 (2011), 535.  doi: 10.1016/j.nonrwa.2010.06.038.  Google Scholar

[25]

D. Sattinger, On the stability of waves of nonlinear parabolic systems,, Advances in Math., 22 (1976), 312.  doi: 10.1016/0001-8708(76)90098-0.  Google Scholar

[26]

J. Travis, D. Murrell and C. Dytham, The evolution of density-dependent dispersal,, Proc. R. Soc. Lond. B, 266 (1999), 1837.  doi: 10.1098/rspb.1999.0854.  Google Scholar

[27]

R. Veit and M. Lewis, Dispersal, population growth and the Allee Effect: Dynamics of the House Finch invasion of eastern North America,, American Naturalist, 148 (1996), 255.  doi: 10.1086/285924.  Google Scholar

[28]

D. Volkov and R. Lui, Spreading speed and travelling wave solutions of a partially sedentary population,, IMA J. Appl. Math., 72 (2007), 801.  doi: 10.1093/imamat/hxm025.  Google Scholar

[29]

H. Wang and C. Castillo-Chavez, Spreading speeds and traveling waves for non-cooperative integro-difference systems,, preprint, ().   Google Scholar

[30]

H. Weinberger, Asymptotic behavior of a model in population genetics,, in, (1978), 1976.   Google Scholar

[31]

H. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[32]

H. Weinberger, M. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[33]

H. Weinberger, M. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

show all references

References:
[1]

O. Diekmann and H. Kaper, On the bounded solutions of a nonlinear convolution equation,, Nonlinear Anal., 2 (1978), 721.  doi: 10.1016/0362-546X(78)90015-9.  Google Scholar

[2]

R. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[3]

M. Gil', "Difference Equations in Normed Spaces. Stability and Oscillations,", North-Holland Mathematics Studies 206, (2007).   Google Scholar

[4]

D. Hardin, P. Takac and G. Webb, A comparison of dispersal strategies for survival of spatially heterogeneous populations,, SIAM J. Appl. Math., 48 (1988), 1396.  doi: 10.1137/0148086.  Google Scholar

[5]

D. Hardin, P. Takac and G. Webb, Dispersion population models discrete in time and continuous in space,, J. Math. Biol., 28 (1990), 1.  doi: 10.1007/BF00171515.  Google Scholar

[6]

M. Hassell and H. Comins, Discrete time models for two-species competition,, Theoretical Population Biology, 9 (1976), 202.  doi: 10.1016/0040-5809(76)90045-9.  Google Scholar

[7]

S. Hsu and X. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.   Google Scholar

[8]

A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Éude de l'éuations de la diffusion avec crois-sance de la quantité de matièret son application a un problème biologique,, Bull. Univ. Moscow, 1 (1937), 1.   Google Scholar

[9]

M. Kot and W. Schaffer, Discrete-time growth-dispersal models,, Math. Biosci., 80 (1986), 109.  doi: 10.1016/0025-5564(86)90069-6.  Google Scholar

[10]

M. Kot, Discrete-time travelling waves: ecological examples,, J. Math. Biol., 30 (1992), 413.  doi: 10.1007/BF00173295.  Google Scholar

[11]

M. Kot, M. Lewis and P. van den Driessche, Dispersal data and the spread of invading organisms,, Ecology, 77 (1996), 2027.  doi: 10.2307/2265698.  Google Scholar

[12]

M. Lewis, B. Li and H. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[13]

B. Li, M. Lewis and H. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[14]

B. Li, H. Weinberger and M. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[15]

B. Li, Some remarks on traveling wave solutions in competition models,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 389.  doi: 10.3934/dcdsb.2009.12.389.  Google Scholar

[16]

G. Lin and W. Li, Spreading speeds and traveling wavefronts for second order integrodifference equations,, J. Math. Anal. Appl., 361 (2010), 520.  doi: 10.1016/j.jmaa.2009.07.035.  Google Scholar

[17]

R. Lui, A nonlinear integral operator arising from a model in population genetics. I. Monotone initial data,, SIAM J. Math. Anal., 13 (1982), 913.  doi: 10.1137/0513064.  Google Scholar

[18]

R. Lui, A nonlinear integral operator arising from a model in population genetics. II. Initial data with compact support,, SIAM J. Math. Anal., 13 (1982), 938.  doi: 10.1137/0513065.  Google Scholar

[19]

R. Lui, Existence and stability of travelling wave solutions of a nonlinear integral operator,, J. Math. Biol., 16 (): 199.   Google Scholar

[20]

R. Lui, A nonlinear integral operator arising from a model in population genetics. III. Heterozygote inferior case,, SIAM J. Math. Anal., 16 (1985), 1180.  doi: 10.1137/0516087.  Google Scholar

[21]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[22]

F. Lutscher, Density-dependent dispersal in integrodifference equations,, J. Math. Biol., 56 (2008), 499.  doi: 10.1007/s00285-007-0127-1.  Google Scholar

[23]

M. Neubert, M. Kot and M. Lewis, Dispersal and pattern-formation in a discrete-time predator-prey model,, Theoretical Population Biology, 48 (1995), 7.  doi: 10.1006/tpbi.1995.1020.  Google Scholar

[24]

S. Pan and G. Lin, Propagation of second order integrodifference equations with local monotonicity,, Nonlinear Anal. RWA, 12 (2011), 535.  doi: 10.1016/j.nonrwa.2010.06.038.  Google Scholar

[25]

D. Sattinger, On the stability of waves of nonlinear parabolic systems,, Advances in Math., 22 (1976), 312.  doi: 10.1016/0001-8708(76)90098-0.  Google Scholar

[26]

J. Travis, D. Murrell and C. Dytham, The evolution of density-dependent dispersal,, Proc. R. Soc. Lond. B, 266 (1999), 1837.  doi: 10.1098/rspb.1999.0854.  Google Scholar

[27]

R. Veit and M. Lewis, Dispersal, population growth and the Allee Effect: Dynamics of the House Finch invasion of eastern North America,, American Naturalist, 148 (1996), 255.  doi: 10.1086/285924.  Google Scholar

[28]

D. Volkov and R. Lui, Spreading speed and travelling wave solutions of a partially sedentary population,, IMA J. Appl. Math., 72 (2007), 801.  doi: 10.1093/imamat/hxm025.  Google Scholar

[29]

H. Wang and C. Castillo-Chavez, Spreading speeds and traveling waves for non-cooperative integro-difference systems,, preprint, ().   Google Scholar

[30]

H. Weinberger, Asymptotic behavior of a model in population genetics,, in, (1978), 1976.   Google Scholar

[31]

H. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[32]

H. Weinberger, M. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[33]

H. Weinberger, M. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

[1]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[2]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[3]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[4]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[5]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[6]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[7]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[8]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[9]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[10]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[11]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[12]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[13]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[14]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[15]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[16]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[17]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[18]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[19]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[20]

Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]