October  2011, 16(3): 945-961. doi: 10.3934/dcdsb.2011.16.945

Tikhonov's theorem and quasi-steady state

1. 

Lehrstuhl A für Mathematik, RWTH Aachen, 52056 Aachen, Germany, Germany

Received  July 2010 Revised  March 2011 Published  June 2011

There exists a systematic approach to asymptotic properties for quasi-steady state phenomena via the classical theory of Tikhonov and Fenichel. This observation allows, on the one hand, to settle convergence issues, which are far from trivial in asymptotic expansions. On the other hand, even if one takes convergence for granted, the approach yields a natural way to compute a reduced system on the slow manifold, with a reduced equation that is frequently simpler than the one obtained by the ad hoc approach. In particular, the reduced system is always rational. The paper includes a discussion of necessary and sufficient conditions for applicability of Tikhonov's and Fenichel's theorems, computational issues and a direct determination of the reduced system. The results are applied to several relevant examples.
Citation: Lena Noethen, Sebastian Walcher. Tikhonov's theorem and quasi-steady state. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 945-961. doi: 10.3934/dcdsb.2011.16.945
References:
[1]

P. Atkins and J. de Paula, "Physical Chemistry,'', 8th edition, (2006).   Google Scholar

[2]

J. M. Berg, J. L. Tymovzko and L. Stryer, "Biochemistry: International Edition,'', 6th edition, (2006).   Google Scholar

[3]

Yu. N. Bibikov, "Local Theory of Nonlinear Analytic Ordinary Differential Equations,'', Lecture Notes in Mathematics, 702 (1979).   Google Scholar

[4]

J. A. M. Borghans, R. J. de Boer and L. A. Segel, Extending the quasi-steady state approximation by changing variables,, Bull. Math. Biol., 58 (1996), 43.  doi: 10.1007/BF02458281.  Google Scholar

[5]

S. Cunha Orfao, G. Jank, K. Mottaghy, S. Walcher and E. Zerz, Qualitative properties and stabilizability of a model for blood thrombin formation,, J. Math. Anal. Appl., 346 (2008), 218.  doi: 10.1016/j.jmaa.2008.05.060.  Google Scholar

[6]

P. Duchêne and P. Rouchon, Kinetic scheme reduction via geometric singular perturbation techniques,, Chem. Engineering Sci., 51 (1996), 4461.   Google Scholar

[7]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations,, J. Diff. Eqs., 31 (1979), 53.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[8]

S. J. Fraser and M. R. Roussel, Phase plane geometries in enzyme kinetics,, Can. J. Chem., 72 (1993), 800.  doi: 10.1139/v94-107.  Google Scholar

[9]

W. Gröbner and H. Knapp (Eds.), "Contributions to the Method of Lie Series,'', Bibliographisches Institut, (1967).   Google Scholar

[10]

F. C. Hoppensteadt, Singular perturbations on the infinite interval,, Trans. Amer. Math. Soc., 123 (1966), 521.  doi: 10.1090/S0002-9947-1966-0194693-9.  Google Scholar

[11]

C. K. R. T. Jones, Geometric singular perturbation theory,, in, 1609 (1995).   Google Scholar

[12]

H. G. Kaper and T. J. Kaper, Asymptotic analysis of two reduction methods for systems of chemical reactions,, Physica D, 165 (2002), 66.  doi: 10.1016/S0167-2789(02)00386-X.  Google Scholar

[13]

J. Keener and J. Sneyd, "Mathematical Physiology,'', Springer, (1998).   Google Scholar

[14]

S. Lang, "Algebra,'', 2nd edition, (1984).   Google Scholar

[15]

L. Michaelis and M. L. Menten, Die Kinetik der Invertinwirkung,, Biochem. Z., 49 (1913), 333.   Google Scholar

[16]

J. D. Murray, "Mathematical Biology,'', 2nd edition Springer, (1993).  doi: 10.1007/b98869.  Google Scholar

[17]

L. Noethen, "Quasi-Stationarität und fast-invariante Mengen gewöhnlicher Differentialgleichungen,'', Ph.D. thesis, (2008).   Google Scholar

[18]

L. Noethen and S. Walcher, Quasi-steady state in the Michaelis-Menten system,, Nonlin. Analysis Real World Appl., 8 (2007), 1512.  doi: 10.1016/j.nonrwa.2006.08.004.  Google Scholar

[19]

L. Noethen and S. Walcher, Quasi-steady state and nearly invariant sets,, SIAM J. Appl. Math., 70 (2009), 1341.  doi: 10.1137/090758180.  Google Scholar

[20]

M. Schauer and R. Heinrich, Analysis of the quasi-steady-state approximation for an enzymatic one-substrate reaction,, J. Theor. Biol., 79 (1979), 425.  doi: 10.1016/0022-5193(79)90235-2.  Google Scholar

[21]

M. Schauer and R. Heinrich, Quasi-steady-state approximation in the mathematical modeling of biochemical reaction networks,, Math. Biosci., 65 (1983), 155.  doi: 10.1016/0025-5564(83)90058-5.  Google Scholar

[22]

S. Schnell and P. K. Maini, Enzyme kinetics at high enzyme concentration,, Bull. Math. Biol., 62 (2000), 483.  doi: 10.1006/bulm.1999.0163.  Google Scholar

[23]

L. A. Segel and M. Slemrod, The quasi-steady-state assumption: A case study in perturbation,, SIAM Review, 31 (1989), 446.  doi: 10.1137/1031091.  Google Scholar

[24]

M. Seshadri and G. Fritzsch, Analytical solutions of a simple enzyme kinetic problem by a perturbative procedure,, Biophys. Struct. Mech., 6 (1980), 111.  doi: 10.1007/BF00535748.  Google Scholar

[25]

M. Stiefenhofer, Quasi-steady-state approximation for chemical reaction networks,, J. Math. Biol., 36 (1998), 593.  doi: 10.1007/s002850050116.  Google Scholar

[26]

A. N. Tikhonov, Systems of differential equations containing a small parameter multiplying the derivative (in Russian),, Mat. Sb., 31 (1952), 575.   Google Scholar

[27]

A. R. Tzafriri and E. R. Edelman, The total quasi-steady-state approximation is valid for reversible enzyme kinetics,, J. Theoret. Biol., 226 (2004), 303.  doi: 10.1016/j.jtbi.2003.09.006.  Google Scholar

[28]

A. B. Vasil'eva, Asymptotic behavior of solutions to certain problems involving nonlinear differential equations containing a small parameter multiplying the highest derivatives,, Russ. Math. Surveys, 18 (1963), 13.  doi: 10.1070/RM1963v018n03ABEH001137.  Google Scholar

[29]

F. Verhulst, "Methods and Applications of Singular Perturbations,'', Springer, (2005).  doi: 10.1007/0-387-28313-7.  Google Scholar

show all references

References:
[1]

P. Atkins and J. de Paula, "Physical Chemistry,'', 8th edition, (2006).   Google Scholar

[2]

J. M. Berg, J. L. Tymovzko and L. Stryer, "Biochemistry: International Edition,'', 6th edition, (2006).   Google Scholar

[3]

Yu. N. Bibikov, "Local Theory of Nonlinear Analytic Ordinary Differential Equations,'', Lecture Notes in Mathematics, 702 (1979).   Google Scholar

[4]

J. A. M. Borghans, R. J. de Boer and L. A. Segel, Extending the quasi-steady state approximation by changing variables,, Bull. Math. Biol., 58 (1996), 43.  doi: 10.1007/BF02458281.  Google Scholar

[5]

S. Cunha Orfao, G. Jank, K. Mottaghy, S. Walcher and E. Zerz, Qualitative properties and stabilizability of a model for blood thrombin formation,, J. Math. Anal. Appl., 346 (2008), 218.  doi: 10.1016/j.jmaa.2008.05.060.  Google Scholar

[6]

P. Duchêne and P. Rouchon, Kinetic scheme reduction via geometric singular perturbation techniques,, Chem. Engineering Sci., 51 (1996), 4461.   Google Scholar

[7]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations,, J. Diff. Eqs., 31 (1979), 53.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[8]

S. J. Fraser and M. R. Roussel, Phase plane geometries in enzyme kinetics,, Can. J. Chem., 72 (1993), 800.  doi: 10.1139/v94-107.  Google Scholar

[9]

W. Gröbner and H. Knapp (Eds.), "Contributions to the Method of Lie Series,'', Bibliographisches Institut, (1967).   Google Scholar

[10]

F. C. Hoppensteadt, Singular perturbations on the infinite interval,, Trans. Amer. Math. Soc., 123 (1966), 521.  doi: 10.1090/S0002-9947-1966-0194693-9.  Google Scholar

[11]

C. K. R. T. Jones, Geometric singular perturbation theory,, in, 1609 (1995).   Google Scholar

[12]

H. G. Kaper and T. J. Kaper, Asymptotic analysis of two reduction methods for systems of chemical reactions,, Physica D, 165 (2002), 66.  doi: 10.1016/S0167-2789(02)00386-X.  Google Scholar

[13]

J. Keener and J. Sneyd, "Mathematical Physiology,'', Springer, (1998).   Google Scholar

[14]

S. Lang, "Algebra,'', 2nd edition, (1984).   Google Scholar

[15]

L. Michaelis and M. L. Menten, Die Kinetik der Invertinwirkung,, Biochem. Z., 49 (1913), 333.   Google Scholar

[16]

J. D. Murray, "Mathematical Biology,'', 2nd edition Springer, (1993).  doi: 10.1007/b98869.  Google Scholar

[17]

L. Noethen, "Quasi-Stationarität und fast-invariante Mengen gewöhnlicher Differentialgleichungen,'', Ph.D. thesis, (2008).   Google Scholar

[18]

L. Noethen and S. Walcher, Quasi-steady state in the Michaelis-Menten system,, Nonlin. Analysis Real World Appl., 8 (2007), 1512.  doi: 10.1016/j.nonrwa.2006.08.004.  Google Scholar

[19]

L. Noethen and S. Walcher, Quasi-steady state and nearly invariant sets,, SIAM J. Appl. Math., 70 (2009), 1341.  doi: 10.1137/090758180.  Google Scholar

[20]

M. Schauer and R. Heinrich, Analysis of the quasi-steady-state approximation for an enzymatic one-substrate reaction,, J. Theor. Biol., 79 (1979), 425.  doi: 10.1016/0022-5193(79)90235-2.  Google Scholar

[21]

M. Schauer and R. Heinrich, Quasi-steady-state approximation in the mathematical modeling of biochemical reaction networks,, Math. Biosci., 65 (1983), 155.  doi: 10.1016/0025-5564(83)90058-5.  Google Scholar

[22]

S. Schnell and P. K. Maini, Enzyme kinetics at high enzyme concentration,, Bull. Math. Biol., 62 (2000), 483.  doi: 10.1006/bulm.1999.0163.  Google Scholar

[23]

L. A. Segel and M. Slemrod, The quasi-steady-state assumption: A case study in perturbation,, SIAM Review, 31 (1989), 446.  doi: 10.1137/1031091.  Google Scholar

[24]

M. Seshadri and G. Fritzsch, Analytical solutions of a simple enzyme kinetic problem by a perturbative procedure,, Biophys. Struct. Mech., 6 (1980), 111.  doi: 10.1007/BF00535748.  Google Scholar

[25]

M. Stiefenhofer, Quasi-steady-state approximation for chemical reaction networks,, J. Math. Biol., 36 (1998), 593.  doi: 10.1007/s002850050116.  Google Scholar

[26]

A. N. Tikhonov, Systems of differential equations containing a small parameter multiplying the derivative (in Russian),, Mat. Sb., 31 (1952), 575.   Google Scholar

[27]

A. R. Tzafriri and E. R. Edelman, The total quasi-steady-state approximation is valid for reversible enzyme kinetics,, J. Theoret. Biol., 226 (2004), 303.  doi: 10.1016/j.jtbi.2003.09.006.  Google Scholar

[28]

A. B. Vasil'eva, Asymptotic behavior of solutions to certain problems involving nonlinear differential equations containing a small parameter multiplying the highest derivatives,, Russ. Math. Surveys, 18 (1963), 13.  doi: 10.1070/RM1963v018n03ABEH001137.  Google Scholar

[29]

F. Verhulst, "Methods and Applications of Singular Perturbations,'', Springer, (2005).  doi: 10.1007/0-387-28313-7.  Google Scholar

[1]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[2]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[3]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[4]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[5]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[6]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[7]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[8]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[9]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[12]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]