October  2011, 16(3): 945-961. doi: 10.3934/dcdsb.2011.16.945

Tikhonov's theorem and quasi-steady state

1. 

Lehrstuhl A für Mathematik, RWTH Aachen, 52056 Aachen, Germany, Germany

Received  July 2010 Revised  March 2011 Published  June 2011

There exists a systematic approach to asymptotic properties for quasi-steady state phenomena via the classical theory of Tikhonov and Fenichel. This observation allows, on the one hand, to settle convergence issues, which are far from trivial in asymptotic expansions. On the other hand, even if one takes convergence for granted, the approach yields a natural way to compute a reduced system on the slow manifold, with a reduced equation that is frequently simpler than the one obtained by the ad hoc approach. In particular, the reduced system is always rational. The paper includes a discussion of necessary and sufficient conditions for applicability of Tikhonov's and Fenichel's theorems, computational issues and a direct determination of the reduced system. The results are applied to several relevant examples.
Citation: Lena Noethen, Sebastian Walcher. Tikhonov's theorem and quasi-steady state. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 945-961. doi: 10.3934/dcdsb.2011.16.945
References:
[1]

P. Atkins and J. de Paula, "Physical Chemistry,'', 8th edition, (2006). Google Scholar

[2]

J. M. Berg, J. L. Tymovzko and L. Stryer, "Biochemistry: International Edition,'', 6th edition, (2006). Google Scholar

[3]

Yu. N. Bibikov, "Local Theory of Nonlinear Analytic Ordinary Differential Equations,'', Lecture Notes in Mathematics, 702 (1979). Google Scholar

[4]

J. A. M. Borghans, R. J. de Boer and L. A. Segel, Extending the quasi-steady state approximation by changing variables,, Bull. Math. Biol., 58 (1996), 43. doi: 10.1007/BF02458281. Google Scholar

[5]

S. Cunha Orfao, G. Jank, K. Mottaghy, S. Walcher and E. Zerz, Qualitative properties and stabilizability of a model for blood thrombin formation,, J. Math. Anal. Appl., 346 (2008), 218. doi: 10.1016/j.jmaa.2008.05.060. Google Scholar

[6]

P. Duchêne and P. Rouchon, Kinetic scheme reduction via geometric singular perturbation techniques,, Chem. Engineering Sci., 51 (1996), 4461. Google Scholar

[7]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations,, J. Diff. Eqs., 31 (1979), 53. doi: 10.1016/0022-0396(79)90152-9. Google Scholar

[8]

S. J. Fraser and M. R. Roussel, Phase plane geometries in enzyme kinetics,, Can. J. Chem., 72 (1993), 800. doi: 10.1139/v94-107. Google Scholar

[9]

W. Gröbner and H. Knapp (Eds.), "Contributions to the Method of Lie Series,'', Bibliographisches Institut, (1967). Google Scholar

[10]

F. C. Hoppensteadt, Singular perturbations on the infinite interval,, Trans. Amer. Math. Soc., 123 (1966), 521. doi: 10.1090/S0002-9947-1966-0194693-9. Google Scholar

[11]

C. K. R. T. Jones, Geometric singular perturbation theory,, in, 1609 (1995). Google Scholar

[12]

H. G. Kaper and T. J. Kaper, Asymptotic analysis of two reduction methods for systems of chemical reactions,, Physica D, 165 (2002), 66. doi: 10.1016/S0167-2789(02)00386-X. Google Scholar

[13]

J. Keener and J. Sneyd, "Mathematical Physiology,'', Springer, (1998). Google Scholar

[14]

S. Lang, "Algebra,'', 2nd edition, (1984). Google Scholar

[15]

L. Michaelis and M. L. Menten, Die Kinetik der Invertinwirkung,, Biochem. Z., 49 (1913), 333. Google Scholar

[16]

J. D. Murray, "Mathematical Biology,'', 2nd edition Springer, (1993). doi: 10.1007/b98869. Google Scholar

[17]

L. Noethen, "Quasi-Stationarität und fast-invariante Mengen gewöhnlicher Differentialgleichungen,'', Ph.D. thesis, (2008). Google Scholar

[18]

L. Noethen and S. Walcher, Quasi-steady state in the Michaelis-Menten system,, Nonlin. Analysis Real World Appl., 8 (2007), 1512. doi: 10.1016/j.nonrwa.2006.08.004. Google Scholar

[19]

L. Noethen and S. Walcher, Quasi-steady state and nearly invariant sets,, SIAM J. Appl. Math., 70 (2009), 1341. doi: 10.1137/090758180. Google Scholar

[20]

M. Schauer and R. Heinrich, Analysis of the quasi-steady-state approximation for an enzymatic one-substrate reaction,, J. Theor. Biol., 79 (1979), 425. doi: 10.1016/0022-5193(79)90235-2. Google Scholar

[21]

M. Schauer and R. Heinrich, Quasi-steady-state approximation in the mathematical modeling of biochemical reaction networks,, Math. Biosci., 65 (1983), 155. doi: 10.1016/0025-5564(83)90058-5. Google Scholar

[22]

S. Schnell and P. K. Maini, Enzyme kinetics at high enzyme concentration,, Bull. Math. Biol., 62 (2000), 483. doi: 10.1006/bulm.1999.0163. Google Scholar

[23]

L. A. Segel and M. Slemrod, The quasi-steady-state assumption: A case study in perturbation,, SIAM Review, 31 (1989), 446. doi: 10.1137/1031091. Google Scholar

[24]

M. Seshadri and G. Fritzsch, Analytical solutions of a simple enzyme kinetic problem by a perturbative procedure,, Biophys. Struct. Mech., 6 (1980), 111. doi: 10.1007/BF00535748. Google Scholar

[25]

M. Stiefenhofer, Quasi-steady-state approximation for chemical reaction networks,, J. Math. Biol., 36 (1998), 593. doi: 10.1007/s002850050116. Google Scholar

[26]

A. N. Tikhonov, Systems of differential equations containing a small parameter multiplying the derivative (in Russian),, Mat. Sb., 31 (1952), 575. Google Scholar

[27]

A. R. Tzafriri and E. R. Edelman, The total quasi-steady-state approximation is valid for reversible enzyme kinetics,, J. Theoret. Biol., 226 (2004), 303. doi: 10.1016/j.jtbi.2003.09.006. Google Scholar

[28]

A. B. Vasil'eva, Asymptotic behavior of solutions to certain problems involving nonlinear differential equations containing a small parameter multiplying the highest derivatives,, Russ. Math. Surveys, 18 (1963), 13. doi: 10.1070/RM1963v018n03ABEH001137. Google Scholar

[29]

F. Verhulst, "Methods and Applications of Singular Perturbations,'', Springer, (2005). doi: 10.1007/0-387-28313-7. Google Scholar

show all references

References:
[1]

P. Atkins and J. de Paula, "Physical Chemistry,'', 8th edition, (2006). Google Scholar

[2]

J. M. Berg, J. L. Tymovzko and L. Stryer, "Biochemistry: International Edition,'', 6th edition, (2006). Google Scholar

[3]

Yu. N. Bibikov, "Local Theory of Nonlinear Analytic Ordinary Differential Equations,'', Lecture Notes in Mathematics, 702 (1979). Google Scholar

[4]

J. A. M. Borghans, R. J. de Boer and L. A. Segel, Extending the quasi-steady state approximation by changing variables,, Bull. Math. Biol., 58 (1996), 43. doi: 10.1007/BF02458281. Google Scholar

[5]

S. Cunha Orfao, G. Jank, K. Mottaghy, S. Walcher and E. Zerz, Qualitative properties and stabilizability of a model for blood thrombin formation,, J. Math. Anal. Appl., 346 (2008), 218. doi: 10.1016/j.jmaa.2008.05.060. Google Scholar

[6]

P. Duchêne and P. Rouchon, Kinetic scheme reduction via geometric singular perturbation techniques,, Chem. Engineering Sci., 51 (1996), 4461. Google Scholar

[7]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations,, J. Diff. Eqs., 31 (1979), 53. doi: 10.1016/0022-0396(79)90152-9. Google Scholar

[8]

S. J. Fraser and M. R. Roussel, Phase plane geometries in enzyme kinetics,, Can. J. Chem., 72 (1993), 800. doi: 10.1139/v94-107. Google Scholar

[9]

W. Gröbner and H. Knapp (Eds.), "Contributions to the Method of Lie Series,'', Bibliographisches Institut, (1967). Google Scholar

[10]

F. C. Hoppensteadt, Singular perturbations on the infinite interval,, Trans. Amer. Math. Soc., 123 (1966), 521. doi: 10.1090/S0002-9947-1966-0194693-9. Google Scholar

[11]

C. K. R. T. Jones, Geometric singular perturbation theory,, in, 1609 (1995). Google Scholar

[12]

H. G. Kaper and T. J. Kaper, Asymptotic analysis of two reduction methods for systems of chemical reactions,, Physica D, 165 (2002), 66. doi: 10.1016/S0167-2789(02)00386-X. Google Scholar

[13]

J. Keener and J. Sneyd, "Mathematical Physiology,'', Springer, (1998). Google Scholar

[14]

S. Lang, "Algebra,'', 2nd edition, (1984). Google Scholar

[15]

L. Michaelis and M. L. Menten, Die Kinetik der Invertinwirkung,, Biochem. Z., 49 (1913), 333. Google Scholar

[16]

J. D. Murray, "Mathematical Biology,'', 2nd edition Springer, (1993). doi: 10.1007/b98869. Google Scholar

[17]

L. Noethen, "Quasi-Stationarität und fast-invariante Mengen gewöhnlicher Differentialgleichungen,'', Ph.D. thesis, (2008). Google Scholar

[18]

L. Noethen and S. Walcher, Quasi-steady state in the Michaelis-Menten system,, Nonlin. Analysis Real World Appl., 8 (2007), 1512. doi: 10.1016/j.nonrwa.2006.08.004. Google Scholar

[19]

L. Noethen and S. Walcher, Quasi-steady state and nearly invariant sets,, SIAM J. Appl. Math., 70 (2009), 1341. doi: 10.1137/090758180. Google Scholar

[20]

M. Schauer and R. Heinrich, Analysis of the quasi-steady-state approximation for an enzymatic one-substrate reaction,, J. Theor. Biol., 79 (1979), 425. doi: 10.1016/0022-5193(79)90235-2. Google Scholar

[21]

M. Schauer and R. Heinrich, Quasi-steady-state approximation in the mathematical modeling of biochemical reaction networks,, Math. Biosci., 65 (1983), 155. doi: 10.1016/0025-5564(83)90058-5. Google Scholar

[22]

S. Schnell and P. K. Maini, Enzyme kinetics at high enzyme concentration,, Bull. Math. Biol., 62 (2000), 483. doi: 10.1006/bulm.1999.0163. Google Scholar

[23]

L. A. Segel and M. Slemrod, The quasi-steady-state assumption: A case study in perturbation,, SIAM Review, 31 (1989), 446. doi: 10.1137/1031091. Google Scholar

[24]

M. Seshadri and G. Fritzsch, Analytical solutions of a simple enzyme kinetic problem by a perturbative procedure,, Biophys. Struct. Mech., 6 (1980), 111. doi: 10.1007/BF00535748. Google Scholar

[25]

M. Stiefenhofer, Quasi-steady-state approximation for chemical reaction networks,, J. Math. Biol., 36 (1998), 593. doi: 10.1007/s002850050116. Google Scholar

[26]

A. N. Tikhonov, Systems of differential equations containing a small parameter multiplying the derivative (in Russian),, Mat. Sb., 31 (1952), 575. Google Scholar

[27]

A. R. Tzafriri and E. R. Edelman, The total quasi-steady-state approximation is valid for reversible enzyme kinetics,, J. Theoret. Biol., 226 (2004), 303. doi: 10.1016/j.jtbi.2003.09.006. Google Scholar

[28]

A. B. Vasil'eva, Asymptotic behavior of solutions to certain problems involving nonlinear differential equations containing a small parameter multiplying the highest derivatives,, Russ. Math. Surveys, 18 (1963), 13. doi: 10.1070/RM1963v018n03ABEH001137. Google Scholar

[29]

F. Verhulst, "Methods and Applications of Singular Perturbations,'', Springer, (2005). doi: 10.1007/0-387-28313-7. Google Scholar

[1]

Karl Peter Hadeler. Michaelis-Menten kinetics, the operator-repressor system, and least squares approaches. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1541-1560. doi: 10.3934/mbe.2013.10.1541

[2]

Urszula Ledzewicz, Helen Moore. Optimal control applied to a generalized Michaelis-Menten model of CML therapy. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 331-346. doi: 10.3934/dcdsb.2018022

[3]

Jagadeesh R. Sonnad, Chetan T. Goudar. Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences & Engineering, 2009, 6 (1) : 173-188. doi: 10.3934/mbe.2009.6.173

[4]

Maciej Leszczyński, Urszula Ledzewicz, Heinz Schättler. Optimal control for a mathematical model for anti-angiogenic treatment with Michaelis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2315-2334. doi: 10.3934/dcdsb.2019097

[5]

Yangjin Kim, Khalid Boushaba. An enzyme kinetics model of tumor dormancy, regulation of secondary metastases. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1465-1498. doi: 10.3934/dcdss.2011.4.1465

[6]

Jeng-Huei Chen. An analysis of functional curability on HIV infection models with Michaelis-Menten-type immune response and its generalization. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2089-2120. doi: 10.3934/dcdsb.2017086

[7]

Christian Lax, Sebastian Walcher. Singular perturbations and scaling. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 1-29. doi: 10.3934/dcdsb.2019170

[8]

Juan Su, Bing Xu, Lan Zou. Bifurcation analysis of an enzyme-catalyzed reaction system with branched sink. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6783-6815. doi: 10.3934/dcdsb.2019167

[9]

Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309

[10]

Annegret Glitzky. Energy estimates for electro-reaction-diffusion systems with partly fast kinetics. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 159-174. doi: 10.3934/dcds.2009.25.159

[11]

Qiuyan Zhang, Lingling Liu, Weinian Zhang. Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1499-1514. doi: 10.3934/mbe.2017078

[12]

Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179

[13]

Senoussi Guesmia, Abdelmouhcene Sengouga. Some singular perturbations results for semilinear hyperbolic problems. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 567-580. doi: 10.3934/dcdss.2012.5.567

[14]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[15]

Chiara Zanini. Singular perturbations of finite dimensional gradient flows. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 657-675. doi: 10.3934/dcds.2007.18.657

[16]

Canela Jordi. Singular perturbations of Blaschke products and connectivity of Fatou components. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3567-3585. doi: 10.3934/dcds.2017153

[17]

Congming Li, Eric S. Wright. Global existence of solutions to a reaction diffusion system based upon carbonate reaction kinetics. Communications on Pure & Applied Analysis, 2002, 1 (1) : 77-84. doi: 10.3934/cpaa.2002.1.77

[18]

Nikolaos Kazantzis, Vasiliki Kazantzi. Characterization of the dynamic behavior of nonlinear biosystems in the presence of model uncertainty using singular invariance PDEs: Application to immobilized enzyme and cell bioreactors. Mathematical Biosciences & Engineering, 2010, 7 (2) : 401-419. doi: 10.3934/mbe.2010.7.401

[19]

Philip M. J. Trevelyan. Approximating the large time asymptotic reaction zone solution for fractional order kinetics $A^n B^m$. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 219-234. doi: 10.3934/dcdss.2012.5.219

[20]

Joseph G. Yan, Dong-Ming Hwang. Pattern formation in reaction-diffusion systems with $D_2$-symmetric kinetics. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 255-270. doi: 10.3934/dcds.1996.2.255

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]