\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions

Abstract / Introduction Related Papers Cited by
  • We study the asymptotic behavior of the first eigenvalue and eigenfunction of a one-dimensional periodic elliptic operator with Neumann boundary conditions. The second order elliptic equation is not self-adjoint and is singularly perturbed since, denoting by $\epsilon$ the period, each derivative is scaled by an $\epsilon$ factor. The main difficulty is that the domain size is not an integer multiple of the period. More precisely, for a domain of size $1$ and a given fractional part $0\leq\delta<1$, we consider a sequence of periods $\epsilon_n=1/(n+\delta)$ with $n\in \mathbb{N}$. In other words, the domain contains $n$ entire periodic cells and a fraction $\delta$ of a cell cut by the domain boundary. According to the value of the fractional part $\delta$, different asymptotic behaviors are possible: in some cases an homogenized limit is obtained, while in other cases the first eigenfunction is exponentially localized at one of the extreme points of the domain.
    Mathematics Subject Classification: Primary: 35B27; Secondary: 74Q05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Allaire and Y. Capdeboscq, Homogenization of a spectral problem in neutronic multigroup diffusion, Comput. Methods Appl. Mech. Engrg., 187 (2000), 91-117.doi: 10.1016/S0045-7825(99)00112-7.

    [2]

    G. Allaire and Y. Capdeboscq, Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface, Ann. Math. Pura Appl. (4), 181 (2002), 247-282.

    [3]

    G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis, J. Math. Pures et Appli. (9), 77 (1998), 153-208.doi: 10.1016/S0021-7824(98)80068-8.

    [4]

    G. Allaire and R. Orive, Homogenization of periodic non self-adjoint problems with large drift and potential, ESAIM COCV, 13 (2007), 735-749.doi: 10.1051/cocv:2007030.

    [5]

    G. Allaire and A. Piatnistki, Uniform spectral asymptotics for singularly perturbed locally periodic operators, Comm. PDE, 27 (2002), 705-725.doi: 10.1081/PDE-120002871.

    [6]

    A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures," North-Holland, Amsterdam, 1978.

    [7]

    Y. Capdeboscq, Homogenization of a diffusion equation with drift, C. R. Acad. Sci. Paris Série I Math., 327 (1998), 807-812.

    [8]

    G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques, Ann. Sci. École Norm. Sup. Sér. (2), 12 (1883), 47-89.

    [9]

    T. Kato, "Perturbation Theory for Linear Operators," Second edition, Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976.

    [10]

    S. Kozlov, Reducibility of quasiperiodic differential operators and averaging, Trudy Moskov. Mat. Obshch., 46 (1983), 99-123.

    [11]

    W. Magnus and S. Winkler, "Hill's Equation," Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966.

    [12]

    S. Moskow and M. Vogelius, First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1263-1299.

    [13]

    O. A. Oleinik, A. S. Shamaev and G. A. Yosifian, On the limiting behaviour of a sequence of operators defined in different Hilbert's spaces, Upsekhi Math. Nauk., 44 (1989), 157-158.

    [14]

    B. Perthame and P. Souganidis, Asymmetric potentials and motor effect: A homogenization approach, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2055-2071.doi: 10.1016/j.anihpc.2008.10.003.

    [15]

    F. Santosa and M. Vogelius, First-order corrections to the homogenized eigenvalues of a periodic composite medium, SIAM J. Appl. Math., 53 (1993), 1636-1668.doi: 10.1137/0153076.

    [16]

    M. Vanninathan, Homogenization of eigenvalue problems in perforated domains, Proc. Indian Acad. Sci. Math. Sci., 90 (1981), 239-271.doi: 10.1007/BF02838079.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return