January  2012, 17(1): 101-126. doi: 10.3934/dcdsb.2012.17.101

Periodic solutions of a non-divergent diffusion equation with nonlinear sources

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

2. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

Received  July 2010 Revised  March 2011 Published  October 2011

This paper is concerned with the existence of nontrivial and nonnegative periodic solutions of a doubly degenerate and singular parabolic equation in non-divergent form with nonlinear sources. We will determine exact classification for the exponent values of the source, and so, for the nonexistence of nontrivial periodic solutions, as well as the existence of those solutions with compact support, and the existence of positive periodic solutions.
Citation: Chunhua Jin, Jingxue Yin. Periodic solutions of a non-divergent diffusion equation with nonlinear sources. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 101-126. doi: 10.3934/dcdsb.2012.17.101
References:
[1]

L. J. S. Allen, Persistence and extinction in single-species reaction-diffusion models,, Bull. Math. Biol., 45 (1983), 209.   Google Scholar

[2]

R. Dal Passo and S. Luckhaus, A degenerate diffusion problem not in divergence form,, J. Differential Equations, 69 (1987), 1.   Google Scholar

[3]

B. C. Low, Resistive diffusion of force-free magnetic fields in a passive medium,, Astrophys. J., 81 (1973), 209.  doi: 10.1086/152042.  Google Scholar

[4]

S. Angenent, On the formation of singularities in the curve shortening flow,, J. Differential Geom., 33 (1991), 601.   Google Scholar

[5]

C. H. Jin and J. X. Yin, Non-extinct shrinking self-similar solutions for a class of non-divergence equations,, in press., ().   Google Scholar

[6]

C. T. Taam, On nonlinear diffusion equations,, J. Differential Equations, 3 (1967), 482.   Google Scholar

[7]

S. J. Farlow, An existence theorem for periodic solutions of a parabolic boundary value problem of the second kind,, SIAM J. Appl. Math., 16 (1968), 1223.  doi: 10.1137/0116102.  Google Scholar

[8]

Y. Giga and N. Mizoguchi, On time periodic solutions of the Dirichlet problem for degenerate parabolic equations of nondivergence type,, J. Math. Anal. Appl., 201 (1996), 396.  doi: 10.1006/jmaa.1996.0263.  Google Scholar

[9]

N. Hirano and N. Mizoguchi, Positive unstable periodic solutions for superlinear parabolic equations,, Proceedings of the American Mathematical Society, 123 (1995), 1487.  doi: 10.1090/S0002-9939-1995-1234627-2.  Google Scholar

[10]

F. Browder, "Periodic Solutions of Nonlinear Equations of Evolution in Infinite Dimensional Spaces,", 1969 Lectures in Differential Equations, (1969), 71.   Google Scholar

[11]

B. A. Ton, Periodic solutions of nonlinear evolution equations in Banach spaces,, Canad. J. Math., 23 (1971), 189.  doi: 10.4153/CJM-1971-018-x.  Google Scholar

[12]

Y. Wang, J. Yin and Z. Wu, Periodic solutions of evolution p-laplacian equations with nonlinear sources,, J. Math. Anal. Appl., 219 (1998), 76.  doi: 10.1006/jmaa.1997.5783.  Google Scholar

[13]

A. Beltramo and P. Hess, On the principal eigenvalue of a periodic-parabolic operator,, Comm. Partial Differential Equations, 9 (1984), 919.   Google Scholar

[14]

M. J. Esteban, On periodic solutions of superlinear parabolic problems,, Tran. Amer. Math. Society, 293 (1986), 171.  doi: 10.1090/S0002-9947-1986-0814919-8.  Google Scholar

[15]

M. J. Esteban, A remark on the existence of positive periodic solutions of superlinear parabolic problems,, Proceedings of the American Mathematical Society, 102 (1988), 131.  doi: 10.1090/S0002-9939-1988-0915730-7.  Google Scholar

[16]

P. Quittner, Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic problems,, NoDEA Nonlinear Differ. Equ. Appl., 11 (2004), 237.   Google Scholar

[17]

T. I. Seidman, Periodic solutions of a non-linear parabolic equation,, J. Differential Equations, 19 (1975), 242.   Google Scholar

[18]

M. Nakao, On boundedness, periodicity, and almost periodicity of solutions of some nonlinear parabolic equations,, J. Differential Equations, 19 (1975), 371.   Google Scholar

[19]

N. Mizoguchi, Periodic solutions for degenerate diffusion equations,, Indiana Univ. Math. J., 44 (1995), 413.  doi: 10.1512/iumj.1995.44.1994.  Google Scholar

[20]

J. X. Yin and C. H. Jin, Periodic solutions of the evolutionary $p$-Laplacian with nonlinear sources,, J. Math. Anal. Appl., 368 (2010), 604.  doi: 10.1016/j.jmaa.2010.03.006.  Google Scholar

[21]

C. H. Jin and J. X. Yin, The asymptotic behavior of a doubly degenerate parabolic equation not in divergence form,, in press., ().   Google Scholar

[22]

C. H. Jin and J. X. Yin, Critical exponent of a doubly degenerate parabolic equation in non-divergence form with reaction sources,, Chinese Ann. Math. Ser. A, 30 (2009), 525.   Google Scholar

[23]

J. García-Melián and J. Sabina de Lis, Maximum and comparison principles for operators involving the $p$-Laplacian,, J. Math. Anal. Appl., 218 (1998), 49.  doi: 10.1006/jmaa.1997.5732.  Google Scholar

[24]

C. Azizieh and Ph. Clément, A priori estimates and continuation methods for positive solutions of $p$-Laplace equations,, J. Differential Equations, 179 (2002), 213.   Google Scholar

[25]

J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79.  doi: 10.1007/BF02392645.  Google Scholar

[26]

È. Mitidieri and S. I. Pokhozhaev, Absence of global positive solutions of quasilinear elliptic inequalities,, (Russian), 359 (1998), 456.   Google Scholar

[27]

È. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in $\mathbb R^N$,, Proc. Steklov Inst. Math., 227 (1999), 186.   Google Scholar

[28]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[29]

J. L. Vásquez, A strong maximum principle for some quasilinear elliptic equations,, Appl. Math. Optim., 12 (1984), 191.  doi: 10.1007/BF01449041.  Google Scholar

[30]

M. Ôtani, Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations,, J. Func. Anal., 76 (1988), 140.  doi: 10.1016/0022-1236(88)90053-5.  Google Scholar

[31]

Peter Lindqvist, On the equation div $(|\nabla u|^{p-2}\nabla u)+ \lambda| u|^{p-2}u=0$,, Proc. Amer. Math. Soc., 109 (1990), 157.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

show all references

References:
[1]

L. J. S. Allen, Persistence and extinction in single-species reaction-diffusion models,, Bull. Math. Biol., 45 (1983), 209.   Google Scholar

[2]

R. Dal Passo and S. Luckhaus, A degenerate diffusion problem not in divergence form,, J. Differential Equations, 69 (1987), 1.   Google Scholar

[3]

B. C. Low, Resistive diffusion of force-free magnetic fields in a passive medium,, Astrophys. J., 81 (1973), 209.  doi: 10.1086/152042.  Google Scholar

[4]

S. Angenent, On the formation of singularities in the curve shortening flow,, J. Differential Geom., 33 (1991), 601.   Google Scholar

[5]

C. H. Jin and J. X. Yin, Non-extinct shrinking self-similar solutions for a class of non-divergence equations,, in press., ().   Google Scholar

[6]

C. T. Taam, On nonlinear diffusion equations,, J. Differential Equations, 3 (1967), 482.   Google Scholar

[7]

S. J. Farlow, An existence theorem for periodic solutions of a parabolic boundary value problem of the second kind,, SIAM J. Appl. Math., 16 (1968), 1223.  doi: 10.1137/0116102.  Google Scholar

[8]

Y. Giga and N. Mizoguchi, On time periodic solutions of the Dirichlet problem for degenerate parabolic equations of nondivergence type,, J. Math. Anal. Appl., 201 (1996), 396.  doi: 10.1006/jmaa.1996.0263.  Google Scholar

[9]

N. Hirano and N. Mizoguchi, Positive unstable periodic solutions for superlinear parabolic equations,, Proceedings of the American Mathematical Society, 123 (1995), 1487.  doi: 10.1090/S0002-9939-1995-1234627-2.  Google Scholar

[10]

F. Browder, "Periodic Solutions of Nonlinear Equations of Evolution in Infinite Dimensional Spaces,", 1969 Lectures in Differential Equations, (1969), 71.   Google Scholar

[11]

B. A. Ton, Periodic solutions of nonlinear evolution equations in Banach spaces,, Canad. J. Math., 23 (1971), 189.  doi: 10.4153/CJM-1971-018-x.  Google Scholar

[12]

Y. Wang, J. Yin and Z. Wu, Periodic solutions of evolution p-laplacian equations with nonlinear sources,, J. Math. Anal. Appl., 219 (1998), 76.  doi: 10.1006/jmaa.1997.5783.  Google Scholar

[13]

A. Beltramo and P. Hess, On the principal eigenvalue of a periodic-parabolic operator,, Comm. Partial Differential Equations, 9 (1984), 919.   Google Scholar

[14]

M. J. Esteban, On periodic solutions of superlinear parabolic problems,, Tran. Amer. Math. Society, 293 (1986), 171.  doi: 10.1090/S0002-9947-1986-0814919-8.  Google Scholar

[15]

M. J. Esteban, A remark on the existence of positive periodic solutions of superlinear parabolic problems,, Proceedings of the American Mathematical Society, 102 (1988), 131.  doi: 10.1090/S0002-9939-1988-0915730-7.  Google Scholar

[16]

P. Quittner, Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic problems,, NoDEA Nonlinear Differ. Equ. Appl., 11 (2004), 237.   Google Scholar

[17]

T. I. Seidman, Periodic solutions of a non-linear parabolic equation,, J. Differential Equations, 19 (1975), 242.   Google Scholar

[18]

M. Nakao, On boundedness, periodicity, and almost periodicity of solutions of some nonlinear parabolic equations,, J. Differential Equations, 19 (1975), 371.   Google Scholar

[19]

N. Mizoguchi, Periodic solutions for degenerate diffusion equations,, Indiana Univ. Math. J., 44 (1995), 413.  doi: 10.1512/iumj.1995.44.1994.  Google Scholar

[20]

J. X. Yin and C. H. Jin, Periodic solutions of the evolutionary $p$-Laplacian with nonlinear sources,, J. Math. Anal. Appl., 368 (2010), 604.  doi: 10.1016/j.jmaa.2010.03.006.  Google Scholar

[21]

C. H. Jin and J. X. Yin, The asymptotic behavior of a doubly degenerate parabolic equation not in divergence form,, in press., ().   Google Scholar

[22]

C. H. Jin and J. X. Yin, Critical exponent of a doubly degenerate parabolic equation in non-divergence form with reaction sources,, Chinese Ann. Math. Ser. A, 30 (2009), 525.   Google Scholar

[23]

J. García-Melián and J. Sabina de Lis, Maximum and comparison principles for operators involving the $p$-Laplacian,, J. Math. Anal. Appl., 218 (1998), 49.  doi: 10.1006/jmaa.1997.5732.  Google Scholar

[24]

C. Azizieh and Ph. Clément, A priori estimates and continuation methods for positive solutions of $p$-Laplace equations,, J. Differential Equations, 179 (2002), 213.   Google Scholar

[25]

J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79.  doi: 10.1007/BF02392645.  Google Scholar

[26]

È. Mitidieri and S. I. Pokhozhaev, Absence of global positive solutions of quasilinear elliptic inequalities,, (Russian), 359 (1998), 456.   Google Scholar

[27]

È. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in $\mathbb R^N$,, Proc. Steklov Inst. Math., 227 (1999), 186.   Google Scholar

[28]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[29]

J. L. Vásquez, A strong maximum principle for some quasilinear elliptic equations,, Appl. Math. Optim., 12 (1984), 191.  doi: 10.1007/BF01449041.  Google Scholar

[30]

M. Ôtani, Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations,, J. Func. Anal., 76 (1988), 140.  doi: 10.1016/0022-1236(88)90053-5.  Google Scholar

[31]

Peter Lindqvist, On the equation div $(|\nabla u|^{p-2}\nabla u)+ \lambda| u|^{p-2}u=0$,, Proc. Amer. Math. Soc., 109 (1990), 157.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[1]

Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete & Continuous Dynamical Systems - S, 2020, 13 (1) : 47-66. doi: 10.3934/dcdss.2020003

[2]

Jingxue Yin, Chunhua Jin. Critical exponents and traveling wavefronts of a degenerate-singular parabolic equation in non-divergence form. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 213-227. doi: 10.3934/dcdsb.2010.13.213

[3]

Raphaël Danchin, Piotr B. Mucha. Divergence. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1163-1172. doi: 10.3934/dcdss.2013.6.1163

[4]

Saulo R.M. Barros, Antônio L. Pereira, Cláudio Possani, Adilson Simonis. Spatially periodic equilibria for a non local evolution equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 937-948. doi: 10.3934/dcds.2003.9.937

[5]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[6]

Adnan H. Sabuwala, Doreen De Leon. Particular solution to the Euler-Cauchy equation with polynomial non-homegeneities. Conference Publications, 2011, 2011 (Special) : 1271-1278. doi: 10.3934/proc.2011.2011.1271

[7]

Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055

[8]

Maria Rosaria Lancia, Valerio Regis Durante, Paola Vernole. Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1493-1520. doi: 10.3934/dcdss.2016060

[9]

Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control & Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1

[10]

Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks & Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97

[11]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[12]

Giuseppe Tomassetti. Smooth and non-smooth regularizations of the nonlinear diffusion equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1519-1537. doi: 10.3934/dcdss.2017078

[13]

Abdelaziz Rhandi, Roland Schnaubelt. Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 663-683. doi: 10.3934/dcds.1999.5.663

[14]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[15]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[16]

Hiroshi Matsuzawa. On a solution with transition layers for a bistable reaction-diffusion equation with spatially heterogeneous environments. Conference Publications, 2009, 2009 (Special) : 516-525. doi: 10.3934/proc.2009.2009.516

[17]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[18]

Futoshi Takahashi. On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1237-1241. doi: 10.3934/cpaa.2013.12.1237

[19]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[20]

Tomás Caraballo, Antonio M. Márquez-Durán, Rivero Felipe. Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1817-1833. doi: 10.3934/dcdsb.2017108

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]