Citation: |
[1] |
L. J. S. Allen, Persistence and extinction in single-species reaction-diffusion models, Bull. Math. Biol., 45 (1983), 209-227. |
[2] |
R. Dal Passo and S. Luckhaus, A degenerate diffusion problem not in divergence form, J. Differential Equations, 69 (1987), 1-14. |
[3] |
B. C. Low, Resistive diffusion of force-free magnetic fields in a passive medium, Astrophys. J., 81 (1973), 209-226.doi: 10.1086/152042. |
[4] |
S. Angenent, On the formation of singularities in the curve shortening flow, J. Differential Geom., 33 (1991), 601-633. |
[5] |
C. H. Jin and J. X. Yin, Non-extinct shrinking self-similar solutions for a class of non-divergence equations, in press. |
[6] |
C. T. Taam, On nonlinear diffusion equations, J. Differential Equations, 3 (1967), 482-499. |
[7] |
S. J. Farlow, An existence theorem for periodic solutions of a parabolic boundary value problem of the second kind, SIAM J. Appl. Math., 16 (1968), 1223-1226.doi: 10.1137/0116102. |
[8] |
Y. Giga and N. Mizoguchi, On time periodic solutions of the Dirichlet problem for degenerate parabolic equations of nondivergence type, J. Math. Anal. Appl., 201 (1996), 396-416.doi: 10.1006/jmaa.1996.0263. |
[9] |
N. Hirano and N. Mizoguchi, Positive unstable periodic solutions for superlinear parabolic equations, Proceedings of the American Mathematical Society, 123 (1995), 1487-1495.doi: 10.1090/S0002-9939-1995-1234627-2. |
[10] |
F. Browder, "Periodic Solutions of Nonlinear Equations of Evolution in Infinite Dimensional Spaces," 1969 Lectures in Differential Equations, Vol. 1, Van Nostrand, New York, (1969), 71-96. |
[11] |
B. A. Ton, Periodic solutions of nonlinear evolution equations in Banach spaces, Canad. J. Math., 23 (1971), 189-196.doi: 10.4153/CJM-1971-018-x. |
[12] |
Y. Wang, J. Yin and Z. Wu, Periodic solutions of evolution p-laplacian equations with nonlinear sources, J. Math. Anal. Appl., 219 (1998), 76-96.doi: 10.1006/jmaa.1997.5783. |
[13] |
A. Beltramo and P. Hess, On the principal eigenvalue of a periodic-parabolic operator, Comm. Partial Differential Equations, 9 (1984), 919-941. |
[14] |
M. J. Esteban, On periodic solutions of superlinear parabolic problems, Tran. Amer. Math. Society, 293 (1986), 171-189.doi: 10.1090/S0002-9947-1986-0814919-8. |
[15] |
M. J. Esteban, A remark on the existence of positive periodic solutions of superlinear parabolic problems, Proceedings of the American Mathematical Society, 102 (1988), 131-136.doi: 10.1090/S0002-9939-1988-0915730-7. |
[16] |
P. Quittner, Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic problems, NoDEA Nonlinear Differ. Equ. Appl., 11 (2004), 237-258. |
[17] |
T. I. Seidman, Periodic solutions of a non-linear parabolic equation, J. Differential Equations, 19 (1975), 242-257. |
[18] |
M. Nakao, On boundedness, periodicity, and almost periodicity of solutions of some nonlinear parabolic equations, J. Differential Equations, 19 (1975), 371-385. |
[19] |
N. Mizoguchi, Periodic solutions for degenerate diffusion equations, Indiana Univ. Math. J., 44 (1995), 413-432.doi: 10.1512/iumj.1995.44.1994. |
[20] |
J. X. Yin and C. H. Jin, Periodic solutions of the evolutionary $p$-Laplacian with nonlinear sources, J. Math. Anal. Appl., 368 (2010), 604-622.doi: 10.1016/j.jmaa.2010.03.006. |
[21] |
C. H. Jin and J. X. Yin, The asymptotic behavior of a doubly degenerate parabolic equation not in divergence form, in press. |
[22] |
C. H. Jin and J. X. Yin, Critical exponent of a doubly degenerate parabolic equation in non-divergence form with reaction sources, Chinese Ann. Math. Ser. A, 30 (2009), 525-538; translation in Chinese J. Contemp. Math., 30 (2009), 311-328. |
[23] |
J. García-Melián and J. Sabina de Lis, Maximum and comparison principles for operators involving the $p$-Laplacian, J. Math. Anal. Appl., 218 (1998), 49-65.doi: 10.1006/jmaa.1997.5732. |
[24] |
C. Azizieh and Ph. Clément, A priori estimates and continuation methods for positive solutions of $p$-Laplace equations, J. Differential Equations, 179 (2002), 213-245. |
[25] |
J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189 (2002), 79-142.doi: 10.1007/BF02392645. |
[26] |
È. Mitidieri and S. I. Pokhozhaev, Absence of global positive solutions of quasilinear elliptic inequalities, (Russian), Dokl. Akad. Nauk., 359 (1998), 456-460. |
[27] |
È. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in $\mathbb R^N$, Proc. Steklov Inst. Math., 227 (1999), 186-216. |
[28] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.doi: 10.1007/BF01221125. |
[29] |
J. L. Vásquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.doi: 10.1007/BF01449041. |
[30] |
M. Ôtani, Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Func. Anal., 76 (1988), 140-159.doi: 10.1016/0022-1236(88)90053-5. |
[31] |
Peter Lindqvist, On the equation div $(|\nabla u|^{p-2}\nabla u)+ \lambda| u|^{p-2}u=0$, Proc. Amer. Math. Soc., 109 (1990), 157-164.doi: 10.1090/S0002-9939-1990-1007505-7. |