June  2012, 17(4): 1101-1112. doi: 10.3934/dcdsb.2012.17.1101

Vorticity jumps in steady water waves

1. 

Brown University, Department of Mathematics and Lefschetz Center for Dynamical Systems, Providence, RI 02912, United States

Received  December 2010 Revised  September 2011 Published  February 2012

There exists a large family of water waves with jump discontinuities in the vorticity. These waves travel at a constant speed. They are two-dimensional, periodic, symmetric, and subject to the influence of gravity. Some of them have large amplitudes. Their existence is proven using local and global bifurcation theory, together with elliptic theory of weak solutions with nonlinear boundary conditions.
Citation: Walter A. Strauss. Vorticity jumps in steady water waves. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101
References:
[1]

J. T. Beale, The existence of solitary water waves,, Comm. Pure Appl. Math., 30 (1977), 373.  doi: 10.1002/cpa.3160300402.  Google Scholar

[2]

B. Buffoni and J. F. Toland, "Analytic Theory of Global Bifurcation. An Introduction,", Princeton Series in Applied Mathematics, (2003).   Google Scholar

[3]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Comm. Pure Appl. Math., 57 (2004), 481.  doi: 10.1002/cpa.3046.  Google Scholar

[4]

A. Constantin and W. Strauss, Periodic traveling gravity waves with discontinuous vorticity,, Arch. Ration. Mech. Anal., 202 (2011), 133.  doi: 10.1007/s00205-011-0412-4.  Google Scholar

[5]

R. Finn and D. Gilbarg, Asymptotic behavior and uniqueness of plane subsonic flows,, Comm. Pure Appl. Math., 10 (1957), 23.   Google Scholar

[6]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[7]

T. Healey and H. Simpson, Global continuation in nonlinear elasticity,, Arch. Ration. Mech. Anal., 143 (1998), 1.  doi: 10.1007/s002050050098.  Google Scholar

[8]

G. M. Lieberman, The nonlinear oblique derivative problem for quasilinear elliptic equations,, Nonlinear Anal., 8 (1984), 49.  doi: 10.1016/0362-546X(84)90027-0.  Google Scholar

[9]

J. Ko and W. Strauss, Large-amplitude steady rotational water waves,, Europ. J. Mech. B Fluids, 27 (2007), 96.  doi: 10.1016/j.euromechflu.2007.04.004.  Google Scholar

[10]

J. Ko and W. Strauss, Effect of vorticity on steady water waves,, J. Fluid Mech., 608 (2008), 197.  doi: 10.1017/S0022112008002371.  Google Scholar

[11]

O. M. Philllips and M. L. Banner, Wave breaking in presence of wind drift and swell,, J. Fluid Mech., 66 (1974), 625.  doi: 10.1017/S0022112074000413.  Google Scholar

[12]

J. Serrin, A symmetry theorem in potential theory,, Arch. Ration. Mech. Anal., 43 (1971), 304.  doi: 10.1007/BF00250468.  Google Scholar

[13]

W. Strauss, Steady water waves,, Bull. Amer. Math. Soc. (N.S.), 47 (2010), 671.   Google Scholar

[14]

S. Walsh, Stratified and steady periodic gravity waves,, SIAM J. Math. Anal., 41 (2009), 1054.  doi: 10.1137/080721583.  Google Scholar

[15]

S. Walsh, Steady periodic gravity waves with surface tension,, preprint, ().   Google Scholar

show all references

References:
[1]

J. T. Beale, The existence of solitary water waves,, Comm. Pure Appl. Math., 30 (1977), 373.  doi: 10.1002/cpa.3160300402.  Google Scholar

[2]

B. Buffoni and J. F. Toland, "Analytic Theory of Global Bifurcation. An Introduction,", Princeton Series in Applied Mathematics, (2003).   Google Scholar

[3]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Comm. Pure Appl. Math., 57 (2004), 481.  doi: 10.1002/cpa.3046.  Google Scholar

[4]

A. Constantin and W. Strauss, Periodic traveling gravity waves with discontinuous vorticity,, Arch. Ration. Mech. Anal., 202 (2011), 133.  doi: 10.1007/s00205-011-0412-4.  Google Scholar

[5]

R. Finn and D. Gilbarg, Asymptotic behavior and uniqueness of plane subsonic flows,, Comm. Pure Appl. Math., 10 (1957), 23.   Google Scholar

[6]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[7]

T. Healey and H. Simpson, Global continuation in nonlinear elasticity,, Arch. Ration. Mech. Anal., 143 (1998), 1.  doi: 10.1007/s002050050098.  Google Scholar

[8]

G. M. Lieberman, The nonlinear oblique derivative problem for quasilinear elliptic equations,, Nonlinear Anal., 8 (1984), 49.  doi: 10.1016/0362-546X(84)90027-0.  Google Scholar

[9]

J. Ko and W. Strauss, Large-amplitude steady rotational water waves,, Europ. J. Mech. B Fluids, 27 (2007), 96.  doi: 10.1016/j.euromechflu.2007.04.004.  Google Scholar

[10]

J. Ko and W. Strauss, Effect of vorticity on steady water waves,, J. Fluid Mech., 608 (2008), 197.  doi: 10.1017/S0022112008002371.  Google Scholar

[11]

O. M. Philllips and M. L. Banner, Wave breaking in presence of wind drift and swell,, J. Fluid Mech., 66 (1974), 625.  doi: 10.1017/S0022112074000413.  Google Scholar

[12]

J. Serrin, A symmetry theorem in potential theory,, Arch. Ration. Mech. Anal., 43 (1971), 304.  doi: 10.1007/BF00250468.  Google Scholar

[13]

W. Strauss, Steady water waves,, Bull. Amer. Math. Soc. (N.S.), 47 (2010), 671.   Google Scholar

[14]

S. Walsh, Stratified and steady periodic gravity waves,, SIAM J. Math. Anal., 41 (2009), 1054.  doi: 10.1137/080721583.  Google Scholar

[15]

S. Walsh, Steady periodic gravity waves with surface tension,, preprint, ().   Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[5]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[6]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[9]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[10]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[11]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[14]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[15]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[16]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[20]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]