January  2012, 17(1): 127-152. doi: 10.3934/dcdsb.2012.17.127

Qualitative analysis of a diffusive prey-predator model with trophic interactions of three levels

1. 

Department of Mathematics, Southeast University, Nanjing 210096, China

2. 

Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076, Singapore

3. 

Natural Science Research Center, Harbin Institute of Technology, Harbin 150080, China

Received  December 2010 Revised  March 2011 Published  October 2011

In this paper, we consider a mathematical model for a prey-predator dynamical system with diffusion and trophic interactions of three levels. In this model, a general trophic function based on the ratio between the prey and a linear function of the predator is used at each level. At the two limits of this trophic function, one recovers the classical prey-dependent and ratio-dependent predation models, respectively. We offer a complete discussion of the dynamical behavior of the model under the homogeneous Neumann boundary condition (the same behavior is also seen in the absence of diffusion). We also discuss existence, uniqueness, stability and bifurcation of equilibrium behavior corresponding to positive steady state solutions under the homogeneous Dirichlet boundary condition. Finally, we give interpretations of some of these results in the context of different predation models.
Citation: Huiling Li, Peter Y. H. Pang, Mingxin Wang. Qualitative analysis of a diffusive prey-predator model with trophic interactions of three levels. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 127-152. doi: 10.3934/dcdsb.2012.17.127
References:
[1]

P. A. Abrams and L. R. Ginzburg, The nature of predation: Prey dependent, ratio dependent or neither?,, Trends in Ecology & Evolution, 15 (2000), 337. doi: 10.1016/S0169-5347(00)01908-X. Google Scholar

[2]

C. O. Alves and D. G. de Figueiredo, Nonvariational elliptic systems. Current developments in partial differential equations,, Discrete Contin. Dyn. Syst., 8 (2002), 289. Google Scholar

[3]

J. Blat and K. J. Brown, Global bifurcation on positive solutions in some systems of elliptic equations,, SIAM. J. Math. Anal., 17 (1986), 1339. doi: 10.1137/0517094. Google Scholar

[4]

G. Buffoni, M. P. Cassinari and M. Groppi, Modelling of predator-prey trophic interactions. Part II: Three trophic levels,, J. Math. Biol., 54 (2007), 623. Google Scholar

[5]

G. Buffoni, M. P. Cassinari, M. Groppi and M. Serluca, Modelling of predator-prey trophic interactions. Part I: Two trophic levels,, J. Math. Biol., 50 (2005), 713. Google Scholar

[6]

A. Casal, J. C. Eilbede and J. López-Gómez, Existence and uniqueness of coexitence states for a predator-prey model with diffusion,, Differential Integral Equations, 7 (1994), 411. Google Scholar

[7]

W.-Y. Chen and M.-X. Wang, Positive steady states of a competitor-competitor-mutualist model,, Acta Math. Appl. Sin. Engl. Ser., 20 (2004), 53. doi: 10.1007/s10255-004-0148-0. Google Scholar

[8]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. Google Scholar

[9]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications,, J. Math. Anal. Appl., 91 (1983), 131. doi: 10.1016/0022-247X(83)90098-7. Google Scholar

[10]

E. N. Dancer and Y. H. Du, Effects of certain degeneracies in the predator-prey model,, SIAM. J. Math. Anal., 34 (2002), 292. doi: 10.1137/S0036141001387598. Google Scholar

[11]

M. Delgado, J. López-Gómez and A. Suárez, On the symbiotic Lotka-Volterra model with diffusion and transport effects,, J. Differential Equations, 160 (2000), 175. Google Scholar

[12]

Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model,, Trans. Amer. Math. Soc., 349 (1997), 2443. doi: 10.1090/S0002-9947-97-01842-4. Google Scholar

[13]

Y. H. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,, J. Differential Equations, 144 (1998), 390. Google Scholar

[14]

C. F. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model,, Comm. Pure Appl. Math., 47 (1994), 1571. doi: 10.1002/cpa.3160471203. Google Scholar

[15]

T. Kato, "Perturbation Theory for Linear Operators,", Die Grundlehren der Mathematischen Wissenschaften, (1966). Google Scholar

[16]

W. Ko and K. Ryu, Coexistence states of a predator-prey system with non-monotonic functional response,, Nonlinear Anal. RWA, 8 (2007), 769. doi: 10.1016/j.nonrwa.2006.03.003. Google Scholar

[17]

L. Li, Coexistence theorems of steady states for predator-prey interacting systems,, Trans. Amer. Math. Soc., 305 (1988), 143. doi: 10.1090/S0002-9947-1988-0920151-1. Google Scholar

[18]

J. López-Gómez and C. Mora-Corral, Minimal complexity of semi-bounded components in bifurcation theory,, Nonlinear Anal., 58 (2004), 749. doi: 10.1016/j.na.2004.04.011. Google Scholar

[19]

C. V. Pao, "Nonlinear Parabolic and Elliptic Equations,", Plenum Press, (1992). Google Scholar

[20]

R. Peng and M. X. Wang, On multiplicity and stability of positive solutions of a diffusive prey-predator model,, J. Math. Anal. Appl., 316 (2006), 256. doi: 10.1016/j.jmaa.2005.04.033. Google Scholar

[21]

W. H. Ruan and W. Feng, On the fixed point index and multiple steady states of reaction-diffusion systems,, Differential Integral Equations, 8 (1995), 371. Google Scholar

[22]

K. Ryu and I. Ahn, Positive solutions for ratio-dependent predator-prey interaction systems,, J. Differential Equations, 218 (2005), 117. Google Scholar

[23]

Y. M. Svirezhev and D. O. Logofet, "Stability of Biological Communities,", Translated from the Russian by Alexey Voinov, (1983). Google Scholar

[24]

M. X. Wang, "Nonlinear Partial Differential Equations of Parabolic Type," (Chinese),, Science Press, (1993). Google Scholar

[25]

M. X. Wang and Q. Wu, Positive solutions of a prey-predator model with predator saturation and competition,, J. Math. Anal. Appl., 345 (2008), 708. doi: 10.1016/j.jmaa.2008.04.054. Google Scholar

[26]

Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions,, SIAM. J. Math. Anal., 21 (1990), 327. doi: 10.1137/0521018. Google Scholar

show all references

References:
[1]

P. A. Abrams and L. R. Ginzburg, The nature of predation: Prey dependent, ratio dependent or neither?,, Trends in Ecology & Evolution, 15 (2000), 337. doi: 10.1016/S0169-5347(00)01908-X. Google Scholar

[2]

C. O. Alves and D. G. de Figueiredo, Nonvariational elliptic systems. Current developments in partial differential equations,, Discrete Contin. Dyn. Syst., 8 (2002), 289. Google Scholar

[3]

J. Blat and K. J. Brown, Global bifurcation on positive solutions in some systems of elliptic equations,, SIAM. J. Math. Anal., 17 (1986), 1339. doi: 10.1137/0517094. Google Scholar

[4]

G. Buffoni, M. P. Cassinari and M. Groppi, Modelling of predator-prey trophic interactions. Part II: Three trophic levels,, J. Math. Biol., 54 (2007), 623. Google Scholar

[5]

G. Buffoni, M. P. Cassinari, M. Groppi and M. Serluca, Modelling of predator-prey trophic interactions. Part I: Two trophic levels,, J. Math. Biol., 50 (2005), 713. Google Scholar

[6]

A. Casal, J. C. Eilbede and J. López-Gómez, Existence and uniqueness of coexitence states for a predator-prey model with diffusion,, Differential Integral Equations, 7 (1994), 411. Google Scholar

[7]

W.-Y. Chen and M.-X. Wang, Positive steady states of a competitor-competitor-mutualist model,, Acta Math. Appl. Sin. Engl. Ser., 20 (2004), 53. doi: 10.1007/s10255-004-0148-0. Google Scholar

[8]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. Google Scholar

[9]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications,, J. Math. Anal. Appl., 91 (1983), 131. doi: 10.1016/0022-247X(83)90098-7. Google Scholar

[10]

E. N. Dancer and Y. H. Du, Effects of certain degeneracies in the predator-prey model,, SIAM. J. Math. Anal., 34 (2002), 292. doi: 10.1137/S0036141001387598. Google Scholar

[11]

M. Delgado, J. López-Gómez and A. Suárez, On the symbiotic Lotka-Volterra model with diffusion and transport effects,, J. Differential Equations, 160 (2000), 175. Google Scholar

[12]

Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model,, Trans. Amer. Math. Soc., 349 (1997), 2443. doi: 10.1090/S0002-9947-97-01842-4. Google Scholar

[13]

Y. H. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,, J. Differential Equations, 144 (1998), 390. Google Scholar

[14]

C. F. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model,, Comm. Pure Appl. Math., 47 (1994), 1571. doi: 10.1002/cpa.3160471203. Google Scholar

[15]

T. Kato, "Perturbation Theory for Linear Operators,", Die Grundlehren der Mathematischen Wissenschaften, (1966). Google Scholar

[16]

W. Ko and K. Ryu, Coexistence states of a predator-prey system with non-monotonic functional response,, Nonlinear Anal. RWA, 8 (2007), 769. doi: 10.1016/j.nonrwa.2006.03.003. Google Scholar

[17]

L. Li, Coexistence theorems of steady states for predator-prey interacting systems,, Trans. Amer. Math. Soc., 305 (1988), 143. doi: 10.1090/S0002-9947-1988-0920151-1. Google Scholar

[18]

J. López-Gómez and C. Mora-Corral, Minimal complexity of semi-bounded components in bifurcation theory,, Nonlinear Anal., 58 (2004), 749. doi: 10.1016/j.na.2004.04.011. Google Scholar

[19]

C. V. Pao, "Nonlinear Parabolic and Elliptic Equations,", Plenum Press, (1992). Google Scholar

[20]

R. Peng and M. X. Wang, On multiplicity and stability of positive solutions of a diffusive prey-predator model,, J. Math. Anal. Appl., 316 (2006), 256. doi: 10.1016/j.jmaa.2005.04.033. Google Scholar

[21]

W. H. Ruan and W. Feng, On the fixed point index and multiple steady states of reaction-diffusion systems,, Differential Integral Equations, 8 (1995), 371. Google Scholar

[22]

K. Ryu and I. Ahn, Positive solutions for ratio-dependent predator-prey interaction systems,, J. Differential Equations, 218 (2005), 117. Google Scholar

[23]

Y. M. Svirezhev and D. O. Logofet, "Stability of Biological Communities,", Translated from the Russian by Alexey Voinov, (1983). Google Scholar

[24]

M. X. Wang, "Nonlinear Partial Differential Equations of Parabolic Type," (Chinese),, Science Press, (1993). Google Scholar

[25]

M. X. Wang and Q. Wu, Positive solutions of a prey-predator model with predator saturation and competition,, J. Math. Anal. Appl., 345 (2008), 708. doi: 10.1016/j.jmaa.2008.04.054. Google Scholar

[26]

Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions,, SIAM. J. Math. Anal., 21 (1990), 327. doi: 10.1137/0521018. Google Scholar

[1]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[2]

Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173

[3]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[4]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[5]

Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026

[6]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[7]

Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597

[8]

Isam Al-Darabsah, Xianhua Tang, Yuan Yuan. A prey-predator model with migrations and delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 737-761. doi: 10.3934/dcdsb.2016.21.737

[9]

R. P. Gupta, Peeyush Chandra, Malay Banerjee. Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 423-443. doi: 10.3934/dcdsb.2015.20.423

[10]

Kaigang Huang, Yongli Cai, Feng Rao, Shengmao Fu, Weiming Wang. Positive steady states of a density-dependent predator-prey model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3087-3107. doi: 10.3934/dcdsb.2017209

[11]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[12]

Mingxin Wang, Peter Y. H. Pang. Qualitative analysis of a diffusive variable-territory prey-predator model. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1061-1072. doi: 10.3934/dcds.2009.23.1061

[13]

J. Gani, R. J. Swift. Prey-predator models with infected prey and predators. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5059-5066. doi: 10.3934/dcds.2013.33.5059

[14]

Komi Messan, Yun Kang. A two patch prey-predator model with multiple foraging strategies in predator: Applications to insects. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 947-976. doi: 10.3934/dcdsb.2017048

[15]

Yun Kang, Sourav Kumar Sasmal, Komi Messan. A two-patch prey-predator model with predator dispersal driven by the predation strength. Mathematical Biosciences & Engineering, 2017, 14 (4) : 843-880. doi: 10.3934/mbe.2017046

[16]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[17]

H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221

[18]

Shanbing Li, Jianhua Wu. Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1539-1558. doi: 10.3934/dcds.2017063

[19]

Meng Zhao, Wan-Tong Li, Jia-Feng Cao. A prey-predator model with a free boundary and sign-changing coefficient in time-periodic environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3295-3316. doi: 10.3934/dcdsb.2017138

[20]

Shuping Li, Weinian Zhang. Bifurcations of a discrete prey-predator model with Holling type II functional response. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 159-176. doi: 10.3934/dcdsb.2010.14.159

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]