January  2012, 17(1): 127-152. doi: 10.3934/dcdsb.2012.17.127

Qualitative analysis of a diffusive prey-predator model with trophic interactions of three levels

1. 

Department of Mathematics, Southeast University, Nanjing 210096, China

2. 

Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076, Singapore

3. 

Natural Science Research Center, Harbin Institute of Technology, Harbin 150080, China

Received  December 2010 Revised  March 2011 Published  October 2011

In this paper, we consider a mathematical model for a prey-predator dynamical system with diffusion and trophic interactions of three levels. In this model, a general trophic function based on the ratio between the prey and a linear function of the predator is used at each level. At the two limits of this trophic function, one recovers the classical prey-dependent and ratio-dependent predation models, respectively. We offer a complete discussion of the dynamical behavior of the model under the homogeneous Neumann boundary condition (the same behavior is also seen in the absence of diffusion). We also discuss existence, uniqueness, stability and bifurcation of equilibrium behavior corresponding to positive steady state solutions under the homogeneous Dirichlet boundary condition. Finally, we give interpretations of some of these results in the context of different predation models.
Citation: Huiling Li, Peter Y. H. Pang, Mingxin Wang. Qualitative analysis of a diffusive prey-predator model with trophic interactions of three levels. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 127-152. doi: 10.3934/dcdsb.2012.17.127
References:
[1]

P. A. Abrams and L. R. Ginzburg, The nature of predation: Prey dependent, ratio dependent or neither?,, Trends in Ecology & Evolution, 15 (2000), 337.  doi: 10.1016/S0169-5347(00)01908-X.  Google Scholar

[2]

C. O. Alves and D. G. de Figueiredo, Nonvariational elliptic systems. Current developments in partial differential equations,, Discrete Contin. Dyn. Syst., 8 (2002), 289.   Google Scholar

[3]

J. Blat and K. J. Brown, Global bifurcation on positive solutions in some systems of elliptic equations,, SIAM. J. Math. Anal., 17 (1986), 1339.  doi: 10.1137/0517094.  Google Scholar

[4]

G. Buffoni, M. P. Cassinari and M. Groppi, Modelling of predator-prey trophic interactions. Part II: Three trophic levels,, J. Math. Biol., 54 (2007), 623.   Google Scholar

[5]

G. Buffoni, M. P. Cassinari, M. Groppi and M. Serluca, Modelling of predator-prey trophic interactions. Part I: Two trophic levels,, J. Math. Biol., 50 (2005), 713.   Google Scholar

[6]

A. Casal, J. C. Eilbede and J. López-Gómez, Existence and uniqueness of coexitence states for a predator-prey model with diffusion,, Differential Integral Equations, 7 (1994), 411.   Google Scholar

[7]

W.-Y. Chen and M.-X. Wang, Positive steady states of a competitor-competitor-mutualist model,, Acta Math. Appl. Sin. Engl. Ser., 20 (2004), 53.  doi: 10.1007/s10255-004-0148-0.  Google Scholar

[8]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[9]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications,, J. Math. Anal. Appl., 91 (1983), 131.  doi: 10.1016/0022-247X(83)90098-7.  Google Scholar

[10]

E. N. Dancer and Y. H. Du, Effects of certain degeneracies in the predator-prey model,, SIAM. J. Math. Anal., 34 (2002), 292.  doi: 10.1137/S0036141001387598.  Google Scholar

[11]

M. Delgado, J. López-Gómez and A. Suárez, On the symbiotic Lotka-Volterra model with diffusion and transport effects,, J. Differential Equations, 160 (2000), 175.   Google Scholar

[12]

Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model,, Trans. Amer. Math. Soc., 349 (1997), 2443.  doi: 10.1090/S0002-9947-97-01842-4.  Google Scholar

[13]

Y. H. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,, J. Differential Equations, 144 (1998), 390.   Google Scholar

[14]

C. F. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model,, Comm. Pure Appl. Math., 47 (1994), 1571.  doi: 10.1002/cpa.3160471203.  Google Scholar

[15]

T. Kato, "Perturbation Theory for Linear Operators,", Die Grundlehren der Mathematischen Wissenschaften, (1966).   Google Scholar

[16]

W. Ko and K. Ryu, Coexistence states of a predator-prey system with non-monotonic functional response,, Nonlinear Anal. RWA, 8 (2007), 769.  doi: 10.1016/j.nonrwa.2006.03.003.  Google Scholar

[17]

L. Li, Coexistence theorems of steady states for predator-prey interacting systems,, Trans. Amer. Math. Soc., 305 (1988), 143.  doi: 10.1090/S0002-9947-1988-0920151-1.  Google Scholar

[18]

J. López-Gómez and C. Mora-Corral, Minimal complexity of semi-bounded components in bifurcation theory,, Nonlinear Anal., 58 (2004), 749.  doi: 10.1016/j.na.2004.04.011.  Google Scholar

[19]

C. V. Pao, "Nonlinear Parabolic and Elliptic Equations,", Plenum Press, (1992).   Google Scholar

[20]

R. Peng and M. X. Wang, On multiplicity and stability of positive solutions of a diffusive prey-predator model,, J. Math. Anal. Appl., 316 (2006), 256.  doi: 10.1016/j.jmaa.2005.04.033.  Google Scholar

[21]

W. H. Ruan and W. Feng, On the fixed point index and multiple steady states of reaction-diffusion systems,, Differential Integral Equations, 8 (1995), 371.   Google Scholar

[22]

K. Ryu and I. Ahn, Positive solutions for ratio-dependent predator-prey interaction systems,, J. Differential Equations, 218 (2005), 117.   Google Scholar

[23]

Y. M. Svirezhev and D. O. Logofet, "Stability of Biological Communities,", Translated from the Russian by Alexey Voinov, (1983).   Google Scholar

[24]

M. X. Wang, "Nonlinear Partial Differential Equations of Parabolic Type," (Chinese),, Science Press, (1993).   Google Scholar

[25]

M. X. Wang and Q. Wu, Positive solutions of a prey-predator model with predator saturation and competition,, J. Math. Anal. Appl., 345 (2008), 708.  doi: 10.1016/j.jmaa.2008.04.054.  Google Scholar

[26]

Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions,, SIAM. J. Math. Anal., 21 (1990), 327.  doi: 10.1137/0521018.  Google Scholar

show all references

References:
[1]

P. A. Abrams and L. R. Ginzburg, The nature of predation: Prey dependent, ratio dependent or neither?,, Trends in Ecology & Evolution, 15 (2000), 337.  doi: 10.1016/S0169-5347(00)01908-X.  Google Scholar

[2]

C. O. Alves and D. G. de Figueiredo, Nonvariational elliptic systems. Current developments in partial differential equations,, Discrete Contin. Dyn. Syst., 8 (2002), 289.   Google Scholar

[3]

J. Blat and K. J. Brown, Global bifurcation on positive solutions in some systems of elliptic equations,, SIAM. J. Math. Anal., 17 (1986), 1339.  doi: 10.1137/0517094.  Google Scholar

[4]

G. Buffoni, M. P. Cassinari and M. Groppi, Modelling of predator-prey trophic interactions. Part II: Three trophic levels,, J. Math. Biol., 54 (2007), 623.   Google Scholar

[5]

G. Buffoni, M. P. Cassinari, M. Groppi and M. Serluca, Modelling of predator-prey trophic interactions. Part I: Two trophic levels,, J. Math. Biol., 50 (2005), 713.   Google Scholar

[6]

A. Casal, J. C. Eilbede and J. López-Gómez, Existence and uniqueness of coexitence states for a predator-prey model with diffusion,, Differential Integral Equations, 7 (1994), 411.   Google Scholar

[7]

W.-Y. Chen and M.-X. Wang, Positive steady states of a competitor-competitor-mutualist model,, Acta Math. Appl. Sin. Engl. Ser., 20 (2004), 53.  doi: 10.1007/s10255-004-0148-0.  Google Scholar

[8]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[9]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications,, J. Math. Anal. Appl., 91 (1983), 131.  doi: 10.1016/0022-247X(83)90098-7.  Google Scholar

[10]

E. N. Dancer and Y. H. Du, Effects of certain degeneracies in the predator-prey model,, SIAM. J. Math. Anal., 34 (2002), 292.  doi: 10.1137/S0036141001387598.  Google Scholar

[11]

M. Delgado, J. López-Gómez and A. Suárez, On the symbiotic Lotka-Volterra model with diffusion and transport effects,, J. Differential Equations, 160 (2000), 175.   Google Scholar

[12]

Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model,, Trans. Amer. Math. Soc., 349 (1997), 2443.  doi: 10.1090/S0002-9947-97-01842-4.  Google Scholar

[13]

Y. H. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,, J. Differential Equations, 144 (1998), 390.   Google Scholar

[14]

C. F. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model,, Comm. Pure Appl. Math., 47 (1994), 1571.  doi: 10.1002/cpa.3160471203.  Google Scholar

[15]

T. Kato, "Perturbation Theory for Linear Operators,", Die Grundlehren der Mathematischen Wissenschaften, (1966).   Google Scholar

[16]

W. Ko and K. Ryu, Coexistence states of a predator-prey system with non-monotonic functional response,, Nonlinear Anal. RWA, 8 (2007), 769.  doi: 10.1016/j.nonrwa.2006.03.003.  Google Scholar

[17]

L. Li, Coexistence theorems of steady states for predator-prey interacting systems,, Trans. Amer. Math. Soc., 305 (1988), 143.  doi: 10.1090/S0002-9947-1988-0920151-1.  Google Scholar

[18]

J. López-Gómez and C. Mora-Corral, Minimal complexity of semi-bounded components in bifurcation theory,, Nonlinear Anal., 58 (2004), 749.  doi: 10.1016/j.na.2004.04.011.  Google Scholar

[19]

C. V. Pao, "Nonlinear Parabolic and Elliptic Equations,", Plenum Press, (1992).   Google Scholar

[20]

R. Peng and M. X. Wang, On multiplicity and stability of positive solutions of a diffusive prey-predator model,, J. Math. Anal. Appl., 316 (2006), 256.  doi: 10.1016/j.jmaa.2005.04.033.  Google Scholar

[21]

W. H. Ruan and W. Feng, On the fixed point index and multiple steady states of reaction-diffusion systems,, Differential Integral Equations, 8 (1995), 371.   Google Scholar

[22]

K. Ryu and I. Ahn, Positive solutions for ratio-dependent predator-prey interaction systems,, J. Differential Equations, 218 (2005), 117.   Google Scholar

[23]

Y. M. Svirezhev and D. O. Logofet, "Stability of Biological Communities,", Translated from the Russian by Alexey Voinov, (1983).   Google Scholar

[24]

M. X. Wang, "Nonlinear Partial Differential Equations of Parabolic Type," (Chinese),, Science Press, (1993).   Google Scholar

[25]

M. X. Wang and Q. Wu, Positive solutions of a prey-predator model with predator saturation and competition,, J. Math. Anal. Appl., 345 (2008), 708.  doi: 10.1016/j.jmaa.2008.04.054.  Google Scholar

[26]

Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions,, SIAM. J. Math. Anal., 21 (1990), 327.  doi: 10.1137/0521018.  Google Scholar

[1]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[2]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[7]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[10]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[11]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[12]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[13]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[14]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[15]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[16]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[17]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[18]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[19]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[20]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]