-
Previous Article
Asymptotics of blowup solutions for the aggregation equation
- DCDS-B Home
- This Issue
-
Next Article
Random walks, random flows, and enhanced diffusivity in advection-diffusion equations
Simulating binary fluid-surfactant dynamics by a phase field model
1. | Department of Applied Mathematics, Center of Mathematical Modeling and Scientific Computing, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan, Taiwan |
2. | Department of Mathematics, National Center for Theoretical Sciences (Taipei offce), National Taiwan University, Taipei 10617, Taiwan |
References:
[1] |
A. B. Branger and D. M. Eckmann, Accelerated arteriolar gas embolism reabsorption by an exogenous surfactant, Anesthesiology, 96 (2002), 971-979.
doi: 10.1097/00000542-200204000-00027. |
[2] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy free energy, J. Chem. Phys., 28 (1958), 258-267.
doi: 10.1063/1.1744102. |
[3] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., 31 (1959), 688-699.
doi: 10.1063/1.1730447. |
[4] |
H. Diamant and D. Andelman, Kinetics of surfactant adsorption at fluid-fluid interfaces, J. Phys. Chem., 100 (1996), 13732-13742.
doi: 10.1021/jp960377k. |
[5] |
H. Diamant, G. Ariel and D. Andelman, Kinetics of surfactant adsorption: The free energy approach, Colloids Surf A, 183-185 (2001), 259-276.
doi: 10.1016/S0927-7757(01)00553-2. |
[6] |
C. D. Eggleton, T. M. Tsai and K. J. Stebe, Tip streaming from a drop in the presence of surfactants, Phys. Rev. Lett., 87 (2001), 048302-1-048302-1.
doi: 10.1103/PhysRevLett.87.048302. |
[7] |
I. Fonseca, M. Morini and V. Slastikov, Surfactants in foam stability: A phase-field model, Arch. Rational Mech. Anal., 183 (2007), 411-456.
doi: 10.1007/s00205-006-0012-x. |
[8] |
J. S. Hesthaven, S. Gottlieb and D. Gottlieb, "Spectral Methods for Time-Dependent Problems," Cambridge Monographs on Applied and Computational Mathematics, 21, Cambridge University Press, Cambridge, 2007. |
[9] |
D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys., 155 (1999), 96-127.
doi: 10.1006/jcph.1999.6332. |
[10] |
Y. T. Hu, D. J. Pine and L. G. Leal, Drop deformation, breakup, and coalescence with compatibilizer, Phys. Fluids, 18 (2000), 484-489.
doi: 10.1063/1.870254. |
[11] |
T. Kawakatsu, K. Kawasaki, M. Furusaka, H. Okabayashi and T. Kanaya, Late stage dynamics of phase separation processes of binary mixtures containing surfactants, J. Chem. Phys., 99 (1993), 8200-8217.
doi: 10.1063/1.466213. |
[12] |
J. Kim, Numerical simulations of phase separation dynamics in a water-oil-surfactant system, J. Colloid Interface Sci., 303 (2006), 272-279.
doi: 10.1016/j.jcis.2006.07.032. |
[13] |
S. Komura and H. Kodama, Two-order-parameter model for an oil-water-surfactant system, Phys. Rew. E, 55 (1997), 1722-1727.
doi: 10.1103/PhysRevE.55.1722. |
[14] |
M. Laradji, H. Gau, M. Grant and M. Zuckermann, The effect of surfactants on the dynamics of phase separation, J. Phys.: Condens. Matter, 4 (1992), 6715-6728.
doi: 10.1088/0953-8984/4/32/006. |
[15] |
G. B. McFadden and A. A. Wheeler, On the Gibbs adsorption equation and diffuse interface models, Proc. R. Soc. Lond. A, 458 (2002), 1129-1149.
doi: 10.1098/rspa.2001.0908. |
[16] |
E. B. Nauman and D. Q. He, Non-linear diffusion and phase separation, Chem. Eng. Sci., 49 (2001), 1999-2018.
doi: 10.1016/S0009-2509(01)00005-7. |
[17] |
D. Raabe, "Computational Materials Science: The Simulation of Materials, Microstructures and Properties," Wiley-VCH, Weinheim, 1998. |
[18] |
T. Teramoto and F. Yonezawa, Droplet growth dynamics in a water/oil/surfactant system, J. Colloid Interface Sci., 235 (2001), 329-333.
doi: 10.1006/jcis.2000.7349. |
[19] |
R. G. M. van der Sman and S. van der Graaf, Diffuse interface model of surfactant adsorption onto flat and droplet interfaces, Rheol Acta, 46 (2006), 3-11. |
show all references
References:
[1] |
A. B. Branger and D. M. Eckmann, Accelerated arteriolar gas embolism reabsorption by an exogenous surfactant, Anesthesiology, 96 (2002), 971-979.
doi: 10.1097/00000542-200204000-00027. |
[2] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy free energy, J. Chem. Phys., 28 (1958), 258-267.
doi: 10.1063/1.1744102. |
[3] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., 31 (1959), 688-699.
doi: 10.1063/1.1730447. |
[4] |
H. Diamant and D. Andelman, Kinetics of surfactant adsorption at fluid-fluid interfaces, J. Phys. Chem., 100 (1996), 13732-13742.
doi: 10.1021/jp960377k. |
[5] |
H. Diamant, G. Ariel and D. Andelman, Kinetics of surfactant adsorption: The free energy approach, Colloids Surf A, 183-185 (2001), 259-276.
doi: 10.1016/S0927-7757(01)00553-2. |
[6] |
C. D. Eggleton, T. M. Tsai and K. J. Stebe, Tip streaming from a drop in the presence of surfactants, Phys. Rev. Lett., 87 (2001), 048302-1-048302-1.
doi: 10.1103/PhysRevLett.87.048302. |
[7] |
I. Fonseca, M. Morini and V. Slastikov, Surfactants in foam stability: A phase-field model, Arch. Rational Mech. Anal., 183 (2007), 411-456.
doi: 10.1007/s00205-006-0012-x. |
[8] |
J. S. Hesthaven, S. Gottlieb and D. Gottlieb, "Spectral Methods for Time-Dependent Problems," Cambridge Monographs on Applied and Computational Mathematics, 21, Cambridge University Press, Cambridge, 2007. |
[9] |
D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys., 155 (1999), 96-127.
doi: 10.1006/jcph.1999.6332. |
[10] |
Y. T. Hu, D. J. Pine and L. G. Leal, Drop deformation, breakup, and coalescence with compatibilizer, Phys. Fluids, 18 (2000), 484-489.
doi: 10.1063/1.870254. |
[11] |
T. Kawakatsu, K. Kawasaki, M. Furusaka, H. Okabayashi and T. Kanaya, Late stage dynamics of phase separation processes of binary mixtures containing surfactants, J. Chem. Phys., 99 (1993), 8200-8217.
doi: 10.1063/1.466213. |
[12] |
J. Kim, Numerical simulations of phase separation dynamics in a water-oil-surfactant system, J. Colloid Interface Sci., 303 (2006), 272-279.
doi: 10.1016/j.jcis.2006.07.032. |
[13] |
S. Komura and H. Kodama, Two-order-parameter model for an oil-water-surfactant system, Phys. Rew. E, 55 (1997), 1722-1727.
doi: 10.1103/PhysRevE.55.1722. |
[14] |
M. Laradji, H. Gau, M. Grant and M. Zuckermann, The effect of surfactants on the dynamics of phase separation, J. Phys.: Condens. Matter, 4 (1992), 6715-6728.
doi: 10.1088/0953-8984/4/32/006. |
[15] |
G. B. McFadden and A. A. Wheeler, On the Gibbs adsorption equation and diffuse interface models, Proc. R. Soc. Lond. A, 458 (2002), 1129-1149.
doi: 10.1098/rspa.2001.0908. |
[16] |
E. B. Nauman and D. Q. He, Non-linear diffusion and phase separation, Chem. Eng. Sci., 49 (2001), 1999-2018.
doi: 10.1016/S0009-2509(01)00005-7. |
[17] |
D. Raabe, "Computational Materials Science: The Simulation of Materials, Microstructures and Properties," Wiley-VCH, Weinheim, 1998. |
[18] |
T. Teramoto and F. Yonezawa, Droplet growth dynamics in a water/oil/surfactant system, J. Colloid Interface Sci., 235 (2001), 329-333.
doi: 10.1006/jcis.2000.7349. |
[19] |
R. G. M. van der Sman and S. van der Graaf, Diffuse interface model of surfactant adsorption onto flat and droplet interfaces, Rheol Acta, 46 (2006), 3-11. |
[1] |
Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741 |
[2] |
Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423 |
[3] |
Irena Pawłow, Wojciech M. Zajączkowski. A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1823-1847. doi: 10.3934/cpaa.2011.10.1823 |
[4] |
Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control and Related Fields, 2020, 10 (2) : 305-331. doi: 10.3934/mcrf.2019040 |
[5] |
Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002 |
[6] |
Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207 |
[7] |
Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013 |
[8] |
Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033 |
[9] |
Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73 |
[10] |
Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127 |
[11] |
Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303 |
[12] |
Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037 |
[13] |
Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163 |
[14] |
Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31 |
[15] |
Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275 |
[16] |
S. Maier-Paape, Ulrich Miller. Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1137-1153. doi: 10.3934/dcds.2006.15.1137 |
[17] |
Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511 |
[18] |
Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure and Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277 |
[19] |
Amy Novick-Cohen, Andrey Shishkov. Upper bounds for coarsening for the degenerate Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 251-272. doi: 10.3934/dcds.2009.25.251 |
[20] |
Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]