\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Simulating binary fluid-surfactant dynamics by a phase field model

Abstract Related Papers Cited by
  • In this paper, the dynamics of a binary fluid-surfactant system described by a phenomenological phase field model is investigated through analytical and numerical computations. We first consider the case of one-dimensional planar interface and prove the existence of the equilibrium solution. Then we derive the analytical equilibrium solution for the order parameter and the surfactant concentration in a particular case. The results show that the present phase field formulation qualitatively mimics the surfactant adsorption on the binary fluid interfaces. We further study the time-dependent solutions of the system by numerical computations based on the pseudospectral Fourier computational framework. The present numerical results are in a good agreement with the previous theoretical study in the way that the surfactant favors the creation of interfaces and also stabilizes the formation of phase regions.
    Mathematics Subject Classification: Primary: 35Q35; Secondary: 65N35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. B. Branger and D. M. Eckmann, Accelerated arteriolar gas embolism reabsorption by an exogenous surfactant, Anesthesiology, 96 (2002), 971-979.doi: 10.1097/00000542-200204000-00027.

    [2]

    J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy free energy, J. Chem. Phys., 28 (1958), 258-267.doi: 10.1063/1.1744102.

    [3]

    J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., 31 (1959), 688-699.doi: 10.1063/1.1730447.

    [4]

    H. Diamant and D. Andelman, Kinetics of surfactant adsorption at fluid-fluid interfaces, J. Phys. Chem., 100 (1996), 13732-13742.doi: 10.1021/jp960377k.

    [5]

    H. Diamant, G. Ariel and D. Andelman, Kinetics of surfactant adsorption: The free energy approach, Colloids Surf A, 183-185 (2001), 259-276.doi: 10.1016/S0927-7757(01)00553-2.

    [6]

    C. D. Eggleton, T. M. Tsai and K. J. Stebe, Tip streaming from a drop in the presence of surfactants, Phys. Rev. Lett., 87 (2001), 048302-1-048302-1.doi: 10.1103/PhysRevLett.87.048302.

    [7]

    I. Fonseca, M. Morini and V. Slastikov, Surfactants in foam stability: A phase-field model, Arch. Rational Mech. Anal., 183 (2007), 411-456.doi: 10.1007/s00205-006-0012-x.

    [8]

    J. S. Hesthaven, S. Gottlieb and D. Gottlieb, "Spectral Methods for Time-Dependent Problems," Cambridge Monographs on Applied and Computational Mathematics, 21, Cambridge University Press, Cambridge, 2007.

    [9]

    D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys., 155 (1999), 96-127.doi: 10.1006/jcph.1999.6332.

    [10]

    Y. T. Hu, D. J. Pine and L. G. Leal, Drop deformation, breakup, and coalescence with compatibilizer, Phys. Fluids, 18 (2000), 484-489.doi: 10.1063/1.870254.

    [11]

    T. Kawakatsu, K. Kawasaki, M. Furusaka, H. Okabayashi and T. Kanaya, Late stage dynamics of phase separation processes of binary mixtures containing surfactants, J. Chem. Phys., 99 (1993), 8200-8217.doi: 10.1063/1.466213.

    [12]

    J. Kim, Numerical simulations of phase separation dynamics in a water-oil-surfactant system, J. Colloid Interface Sci., 303 (2006), 272-279.doi: 10.1016/j.jcis.2006.07.032.

    [13]

    S. Komura and H. Kodama, Two-order-parameter model for an oil-water-surfactant system, Phys. Rew. E, 55 (1997), 1722-1727.doi: 10.1103/PhysRevE.55.1722.

    [14]

    M. Laradji, H. Gau, M. Grant and M. Zuckermann, The effect of surfactants on the dynamics of phase separation, J. Phys.: Condens. Matter, 4 (1992), 6715-6728.doi: 10.1088/0953-8984/4/32/006.

    [15]

    G. B. McFadden and A. A. Wheeler, On the Gibbs adsorption equation and diffuse interface models, Proc. R. Soc. Lond. A, 458 (2002), 1129-1149.doi: 10.1098/rspa.2001.0908.

    [16]

    E. B. Nauman and D. Q. He, Non-linear diffusion and phase separation, Chem. Eng. Sci., 49 (2001), 1999-2018.doi: 10.1016/S0009-2509(01)00005-7.

    [17]

    D. Raabe, "Computational Materials Science: The Simulation of Materials, Microstructures and Properties," Wiley-VCH, Weinheim, 1998.

    [18]

    T. Teramoto and F. Yonezawa, Droplet growth dynamics in a water/oil/surfactant system, J. Colloid Interface Sci., 235 (2001), 329-333.doi: 10.1006/jcis.2000.7349.

    [19]

    R. G. M. van der Sman and S. van der Graaf, Diffuse interface model of surfactant adsorption onto flat and droplet interfaces, Rheol Acta, 46 (2006), 3-11.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(154) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return