\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotics of blowup solutions for the aggregation equation

Abstract Related Papers Cited by
  • We consider the asymptotic behavior of radially symmetric solutions of the aggregation equation $ u_t = \nabla\cdot(u\nabla K*u) $ in $\mathbb{R}^n$, for homogeneous potentials $K(x) = |x|^\gamma$, $\gamma>0$. For $\gamma>2$, the aggregation happens in infinite time and exhibits a concentration of mass along a collapsing $\delta$-ring. We develop an asymptotic theory for the approach to this singular solution. For $\gamma < 2$, the solution blows up in finite time and we present careful numerics of second type similarity solutions for all $\gamma$ in this range, including additional asymptotic behaviors in the limits $\gamma \to 0^+$ and $\gamma\to 2^-$.
    Mathematics Subject Classification: Primary: 35B40, 35B44; Secondary: 92D50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.

    [2]

    D. G. Aronson and J. L. Vázquez, Anomalous exponents in nonlinear diffusion, J. Nonlinear Sci., 5 (1995), 29-56.

    [3]

    D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for granular media, RAIRO Modél. Math. Anal. Numér., 31 (1997), 615-641.

    [4]

    A. L. Bertozzi and J. Brandman, Finite-time blow-up of $L^\infty$-weak solutions of an aggregation equation, Commun. Math. Sci., 8 (2010), 45-65.

    [5]

    A. L. Bertozzi, J. A. Carrillo and T. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity, 22 (2009), 683-710.doi: 10.1088/0951-7715/22/3/009.

    [6]

    A. L. Bertozzi, J. B. Garnett and T. Laurent, Characterization of radially symmetric finite time blowup in multidimensional aggregation equations, to appear in SIAM J. Math. Anal., 2012.

    [7]

    A. L. Bertozzi and T. Laurent, Finite-time blow-up of solutions of an aggregation equation in $\mathbf R^n$, Comm. Math. Phys., 274 (2007), 717-735.doi: 10.1007/s00220-007-0288-1.

    [8]

    A. L. Bertozzi, T. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation, Comm. Pur. Appl. Math., 64 (2011), 45-83.doi: 10.1002/cpa.20334.

    [9]

    M. Bodnar and J. J. L. Velazquez, An integro-differential equation arising as a limit of individual cell-based models, J. Differential Equations, 222 (2006), 341-380.doi: 10.1016/j.jde.2005.07.025.

    [10]

    M. Burger, V. Capasso and D. Morale, On an aggregation model with long and short range interactions, Nonlinear Anal. Real World Appl., 8 (2007), 939-958.doi: 10.1016/j.nonrwa.2006.04.002.

    [11]

    M. Burger and M. Di Francesco, Large time behavior of nonlocal aggregation models with nonlinear diffusion, Networks and Heterogeneous Media, 3 (2008), 749-785.doi: 10.3934/nhm.2008.3.749.

    [12]

    E. Caglioti and C. Villani, Homogeneous cooling states are not always good approximations to granular flows, Arch. Ration. Mech. Anal., 163 (2002), 329-343.doi: 10.1007/s002050200204.

    [13]

    J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271.doi: 10.1215/00127094-2010-211.

    [14]

    Y.-L. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Phys. D, 232 (2007), 33-47.doi: 10.1016/j.physd.2007.05.007.

    [15]

    H. Dong, The aggregation equation with power-law kernels: ill-posedness, mass concentration and similarity solutions, Communications in Mathematical Physics, 304 (2011), 649-664.doi: 10.1007/s00220-011-1237-6.

    [16]

    M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and Lincoln S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability and collapse, Phys. Rev. Lett., 96 (2006), article 104302.

    [17]

    J. Eggers and M. A. Fontelos, The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22 (2009), R1-R44.doi: 10.1088/0951-7715/22/1/R01.

    [18]

    D. D. Holm and V. Putkaradze, Aggregation of finite-size particles with variable mobility, Phys. Rev. Lett., 95 (2005), article 226106.doi: 10.1103/PhysRevLett.95.226106.

    [19]

    D. D. Holm and V. Putkaradze, Formation of clumps and patches in self-aggregation of finite-size particles, Phys. D, 220 (2006), 183-196.doi: 10.1016/j.physd.2006.07.010.

    [20]

    Y. Huang, "Self-Similar Blowup Solutions of the Aggregation Equation,'' Ph.D thesis, University of California Los Angeles, 2010. Available online as UCLA CAM Report 10-66.

    [21]

    Y. Huang and A. L. Bertozzi, Self-similar blowup solutions to an aggregation equation in $R^n$, SIAM J. Appl. Math., 70 (2010), 2582-2603.doi: 10.1137/090774495.

    [22]

    Y. Huang, T. Witelski and A. L. Bertozzi, Anomalous exponents of self-similar blowup solution to an aggregation equation in odd dimensions, preprint, 2010.

    [23]

    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.

    [24]

    T. Laurent, Local and global existence for an aggregation equation, Comm. Partial Differential Equations, 32 (2007), 1941-1964.

    [25]

    H. Li and G. Toscani, Long-time asymptotics of kinetic models of granular flows, Arch. Ration. Mech. Anal., 172 (2004), 407-428.doi: 10.1007/s00205-004-0307-8.

    [26]

    A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570.doi: 10.1007/s002850050158.

    [27]

    A. Mogilner, L. Edelstein-Keshet, L. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., 47 (2003), 353-389.doi: 10.1007/s00285-003-0209-7.

    [28]

    D. Morale, V. Capasso and K. Oelschläger, An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol., 50 (2005), 49-66.doi: 10.1007/s00285-004-0279-1.

    [29]

    C. M. Topaz, A. J. Bernoff, S. Logan and W. Toolson, A model for rolling swarms of locusts, The European Physical Journal-Special Topics, 157 (2008), 93-109.doi: 10.1140/epjst/e2008-00633-y.

    [30]

    C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174 (electronic).doi: 10.1137/S0036139903437424.

    [31]

    C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623.doi: 10.1007/s11538-006-9088-6.

    [32]

    G. Toscani, One-dimensional kinetic models of granular flows, M2AN Math. Model. Numer. Anal., 34 (2000), 1277-1291.doi: 10.1051/m2an:2000127.

    [33]

    C. Villani, "Topics in Optimal Transportation," Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return