July  2012, 17(5): 1365-1381. doi: 10.3934/dcdsb.2012.17.1365

Digraphs vs. dynamics in discrete models of neuronal networks

1. 

Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, IN 46202, United States

2. 

Department of Mathematics, Ohio University, OH 45701, United States

Received  January 2011 Revised  December 2011 Published  March 2012

It has recently been shown that discrete-time finite-state models can reliably reproduce the ordinary differential equation (ODE) dynamics of certain neuronal networks. We study which dynamics are possible in these discrete models for certain types of network connectivities. In particular we are interested in the number of different attractors and bounds on the lengths of attractors and transients. We completely characterize these properties for cyclic connectivities and derive additional results on the lengths of attractors in more general classes of networks.
Citation: Sungwoo Ahn, Winfried Just. Digraphs vs. dynamics in discrete models of neuronal networks. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1365-1381. doi: 10.3934/dcdsb.2012.17.1365
References:
[1]

S. Ahn, "Transient and Attractor Dynamics in Models for Odor Discrimination,", Ph.D thesis, (2010).   Google Scholar

[2]

S. Ahn, B. H. Smith, A. Borisyuk and D. Terman, Analyzing neuronal networks using discrete-time dynamics,, Phys. D, 239 (2010), 515.  doi: 10.1016/j.physd.2009.12.011.  Google Scholar

[3]

M. Bazhenov, M. Stopfer, M. Rabinovich, R. Huerta, H. D. Abarbanel, T. J. Sejnowski and G. Laurent, Model of transient oscillatory synchronization in the locust antennal lobe,, Neuron, 30 (2001), 553.  doi: 10.1016/S0896-6273(01)00284-7.  Google Scholar

[4]

J. Best, C. Park, D. Terman and C. J. Wilson, Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks,, J. Comput. Neurosci., 23 (2007), 217.  doi: 10.1007/s10827-007-0029-7.  Google Scholar

[5]

M. D. Bevan, P. J. Magill, D. Terman, J. P. Bolam and C. J. Wilson, Move to the rhythm: Oscillations in the subthalamic nucleus-external globus pallidus network,, Trends Neurosci., 25 (2002), 525.  doi: 10.1016/S0166-2236(02)02235-X.  Google Scholar

[6]

G. Craciun, Y. Tang and M. Feinberg, Understanding bistability in complex enzyme-driven reaction networks,, Proc. Nat. Acad. Sci. U.S.A., 103 (2006), 8697.  doi: 10.1073/pnas.0602767103.  Google Scholar

[7]

A. Destexhe and T. J. Sejnowski, Synchronized oscillations in thalamic networks: Insights from modeling studies,, in, (1997), 331.   Google Scholar

[8]

A. Elashvili, M. Jibladze and D. Pataraia, Combinatorics of Necklaces and "Hermite Reciprocity,", J. Algebraic Combin., 10 (1999), 173.  doi: 10.1023/A:1018727630642.  Google Scholar

[9]

R. Fdez Galán, S. Sachse, C. G. Galizia and A. V. Herz, Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification,, Neural Comput., 16 (2004), 999.   Google Scholar

[10]

P. C. Fernandez, F. F. Locatelli, N. Person-Rennell, G. Deleo and B. H. Smith, Associative conditioning tunes transient dynamics of early olfactory processing,, J. Neurosci., 29 (2009), 10191.  doi: 10.1523/JNEUROSCI.1874-09.2009.  Google Scholar

[11]

L. Glass, A topological theorem for nonlinear dynamics in chemical and ecological networks,, Proc. Nat. Acad. Sci. U.S.A., 72 (1975), 2856.  doi: 10.1073/pnas.72.8.2856.  Google Scholar

[12]

D. Golomb, X. J. Wang and J. Rinzel, Synchronization properties of spindle oscillations in a thalamic reticular nucleus model,, J. Neurophysiol., 72 (1994), 1109.   Google Scholar

[13]

W. Just, S. Ahn and D. Terman, Minimal attractors in digraph system models of neuronal networks,, Phys. D, 237 (2008), 3186.  doi: 10.1016/j.physd.2008.08.011.  Google Scholar

[14]

W. Just, et al., More phase transitions in digraph systems,, work in progress., ().   Google Scholar

[15]

S. A. Kauffman, "The Origins of Order: Self-Organization and Selection in Evolution,", Oxford University Press, (1993).   Google Scholar

[16]

S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets,, J. Theor. Biol., 22 (1969), 437.  doi: 10.1016/0022-5193(69)90015-0.  Google Scholar

[17]

E. Landau, "Handbuch der Lehre von der Verteilung der Primzahlen,", Chelsea Publishing Co., (1974).   Google Scholar

[18]

G. Laurent, Dynamical representation of odors by oscillating and evolving neural assemblies,, Trends Neurosci., 19 (1996), 489.  doi: 10.1016/S0166-2236(96)10054-0.  Google Scholar

[19]

O. Mazor and G. Laurent, Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons,, Neuron, 48 (2005), 661.  doi: 10.1016/j.neuron.2005.09.032.  Google Scholar

[20]

E. Plahte, T. Mestl and S. W. Omholt, Feedback loops, stability and multistationarity in dynamical systems,, J. Biol. Syst., 3 (1995), 409.  doi: 10.1142/S0218339095000381.  Google Scholar

[21]

É. Remy, P. Ruet and D. Thieffry, Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework,, Adv. in Appl. Math., 41 (2008), 335.  doi: 10.1016/j.aam.2007.11.003.  Google Scholar

[22]

E. H. Snoussi, Necessary conditions for multistationarity and stable periodicity,, J. Biol. Syst., 6 (1998), 3.  doi: 10.1142/S0218339098000042.  Google Scholar

[23]

D. Terman, S. Ahn, X. Wang and W. Just, Reducing neuronal networks to discrete dynamics,, Phys. D, 237 (2008), 324.  doi: 10.1016/j.physd.2007.09.011.  Google Scholar

[24]

D. Terman, A. Bose and N. Kopell, Functional reorganization in thalamocortical networks: Transition between spindling and delta sleep rhythms,, Proc. Nat. Acad. Sci. U.S.A., 93 (1996), 15417.  doi: 10.1073/pnas.93.26.15417.  Google Scholar

[25]

D. Thieffry, Dynamical roles of biological regulatory circuits,, Brief. Bioinform., 8 (2007), 220.  doi: 10.1093/bib/bbm028.  Google Scholar

[26]

R. Thomas and R. D'Ari, "Biological Feedback,", CRC Press, (1990).   Google Scholar

show all references

References:
[1]

S. Ahn, "Transient and Attractor Dynamics in Models for Odor Discrimination,", Ph.D thesis, (2010).   Google Scholar

[2]

S. Ahn, B. H. Smith, A. Borisyuk and D. Terman, Analyzing neuronal networks using discrete-time dynamics,, Phys. D, 239 (2010), 515.  doi: 10.1016/j.physd.2009.12.011.  Google Scholar

[3]

M. Bazhenov, M. Stopfer, M. Rabinovich, R. Huerta, H. D. Abarbanel, T. J. Sejnowski and G. Laurent, Model of transient oscillatory synchronization in the locust antennal lobe,, Neuron, 30 (2001), 553.  doi: 10.1016/S0896-6273(01)00284-7.  Google Scholar

[4]

J. Best, C. Park, D. Terman and C. J. Wilson, Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks,, J. Comput. Neurosci., 23 (2007), 217.  doi: 10.1007/s10827-007-0029-7.  Google Scholar

[5]

M. D. Bevan, P. J. Magill, D. Terman, J. P. Bolam and C. J. Wilson, Move to the rhythm: Oscillations in the subthalamic nucleus-external globus pallidus network,, Trends Neurosci., 25 (2002), 525.  doi: 10.1016/S0166-2236(02)02235-X.  Google Scholar

[6]

G. Craciun, Y. Tang and M. Feinberg, Understanding bistability in complex enzyme-driven reaction networks,, Proc. Nat. Acad. Sci. U.S.A., 103 (2006), 8697.  doi: 10.1073/pnas.0602767103.  Google Scholar

[7]

A. Destexhe and T. J. Sejnowski, Synchronized oscillations in thalamic networks: Insights from modeling studies,, in, (1997), 331.   Google Scholar

[8]

A. Elashvili, M. Jibladze and D. Pataraia, Combinatorics of Necklaces and "Hermite Reciprocity,", J. Algebraic Combin., 10 (1999), 173.  doi: 10.1023/A:1018727630642.  Google Scholar

[9]

R. Fdez Galán, S. Sachse, C. G. Galizia and A. V. Herz, Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification,, Neural Comput., 16 (2004), 999.   Google Scholar

[10]

P. C. Fernandez, F. F. Locatelli, N. Person-Rennell, G. Deleo and B. H. Smith, Associative conditioning tunes transient dynamics of early olfactory processing,, J. Neurosci., 29 (2009), 10191.  doi: 10.1523/JNEUROSCI.1874-09.2009.  Google Scholar

[11]

L. Glass, A topological theorem for nonlinear dynamics in chemical and ecological networks,, Proc. Nat. Acad. Sci. U.S.A., 72 (1975), 2856.  doi: 10.1073/pnas.72.8.2856.  Google Scholar

[12]

D. Golomb, X. J. Wang and J. Rinzel, Synchronization properties of spindle oscillations in a thalamic reticular nucleus model,, J. Neurophysiol., 72 (1994), 1109.   Google Scholar

[13]

W. Just, S. Ahn and D. Terman, Minimal attractors in digraph system models of neuronal networks,, Phys. D, 237 (2008), 3186.  doi: 10.1016/j.physd.2008.08.011.  Google Scholar

[14]

W. Just, et al., More phase transitions in digraph systems,, work in progress., ().   Google Scholar

[15]

S. A. Kauffman, "The Origins of Order: Self-Organization and Selection in Evolution,", Oxford University Press, (1993).   Google Scholar

[16]

S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets,, J. Theor. Biol., 22 (1969), 437.  doi: 10.1016/0022-5193(69)90015-0.  Google Scholar

[17]

E. Landau, "Handbuch der Lehre von der Verteilung der Primzahlen,", Chelsea Publishing Co., (1974).   Google Scholar

[18]

G. Laurent, Dynamical representation of odors by oscillating and evolving neural assemblies,, Trends Neurosci., 19 (1996), 489.  doi: 10.1016/S0166-2236(96)10054-0.  Google Scholar

[19]

O. Mazor and G. Laurent, Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons,, Neuron, 48 (2005), 661.  doi: 10.1016/j.neuron.2005.09.032.  Google Scholar

[20]

E. Plahte, T. Mestl and S. W. Omholt, Feedback loops, stability and multistationarity in dynamical systems,, J. Biol. Syst., 3 (1995), 409.  doi: 10.1142/S0218339095000381.  Google Scholar

[21]

É. Remy, P. Ruet and D. Thieffry, Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework,, Adv. in Appl. Math., 41 (2008), 335.  doi: 10.1016/j.aam.2007.11.003.  Google Scholar

[22]

E. H. Snoussi, Necessary conditions for multistationarity and stable periodicity,, J. Biol. Syst., 6 (1998), 3.  doi: 10.1142/S0218339098000042.  Google Scholar

[23]

D. Terman, S. Ahn, X. Wang and W. Just, Reducing neuronal networks to discrete dynamics,, Phys. D, 237 (2008), 324.  doi: 10.1016/j.physd.2007.09.011.  Google Scholar

[24]

D. Terman, A. Bose and N. Kopell, Functional reorganization in thalamocortical networks: Transition between spindling and delta sleep rhythms,, Proc. Nat. Acad. Sci. U.S.A., 93 (1996), 15417.  doi: 10.1073/pnas.93.26.15417.  Google Scholar

[25]

D. Thieffry, Dynamical roles of biological regulatory circuits,, Brief. Bioinform., 8 (2007), 220.  doi: 10.1093/bib/bbm028.  Google Scholar

[26]

R. Thomas and R. D'Ari, "Biological Feedback,", CRC Press, (1990).   Google Scholar

[1]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[2]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[3]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[4]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[5]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[6]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[7]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[8]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[9]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[12]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[15]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[16]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[17]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[18]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[19]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[20]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]