-
Previous Article
Convergence results for the vector penalty-projection and two-step artificial compressibility methods
- DCDS-B Home
- This Issue
- Next Article
Digraphs vs. dynamics in discrete models of neuronal networks
1. | Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, IN 46202, United States |
2. | Department of Mathematics, Ohio University, OH 45701, United States |
References:
[1] |
S. Ahn, "Transient and Attractor Dynamics in Models for Odor Discrimination," Ph.D thesis, The Ohio State University, 2010. |
[2] |
S. Ahn, B. H. Smith, A. Borisyuk and D. Terman, Analyzing neuronal networks using discrete-time dynamics, Phys. D, 239 (2010), 515-528.
doi: 10.1016/j.physd.2009.12.011. |
[3] |
M. Bazhenov, M. Stopfer, M. Rabinovich, R. Huerta, H. D. Abarbanel, T. J. Sejnowski and G. Laurent, Model of transient oscillatory synchronization in the locust antennal lobe, Neuron, 30 (2001), 553-567.
doi: 10.1016/S0896-6273(01)00284-7. |
[4] |
J. Best, C. Park, D. Terman and C. J. Wilson, Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks, J. Comput. Neurosci., 23 (2007), 217-235.
doi: 10.1007/s10827-007-0029-7. |
[5] |
M. D. Bevan, P. J. Magill, D. Terman, J. P. Bolam and C. J. Wilson, Move to the rhythm: Oscillations in the subthalamic nucleus-external globus pallidus network, Trends Neurosci., 25 (2002), 525-531.
doi: 10.1016/S0166-2236(02)02235-X. |
[6] |
G. Craciun, Y. Tang and M. Feinberg, Understanding bistability in complex enzyme-driven reaction networks, Proc. Nat. Acad. Sci. U.S.A., 103 (2006), 8697-8702.
doi: 10.1073/pnas.0602767103. |
[7] |
A. Destexhe and T. J. Sejnowski, Synchronized oscillations in thalamic networks: Insights from modeling studies, in "Thalamus" (ed. M. Steriade, E. G. Jones and D. A. McCormick), Elsevier, (1997), 331-371. |
[8] |
A. Elashvili, M. Jibladze and D. Pataraia, Combinatorics of Necklaces and "Hermite Reciprocity," J. Algebraic Combin., 10 (1999), 173-188.
doi: 10.1023/A:1018727630642. |
[9] |
R. Fdez Galán, S. Sachse, C. G. Galizia and A. V. Herz, Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification, Neural Comput., 16 (2004), 999-1012. |
[10] |
P. C. Fernandez, F. F. Locatelli, N. Person-Rennell, G. Deleo and B. H. Smith, Associative conditioning tunes transient dynamics of early olfactory processing, J. Neurosci., 29 (2009), 10191-10202.
doi: 10.1523/JNEUROSCI.1874-09.2009. |
[11] |
L. Glass, A topological theorem for nonlinear dynamics in chemical and ecological networks, Proc. Nat. Acad. Sci. U.S.A., 72 (1975), 2856-2857.
doi: 10.1073/pnas.72.8.2856. |
[12] |
D. Golomb, X. J. Wang and J. Rinzel, Synchronization properties of spindle oscillations in a thalamic reticular nucleus model, J. Neurophysiol., 72 (1994), 1109-1126. |
[13] |
W. Just, S. Ahn and D. Terman, Minimal attractors in digraph system models of neuronal networks, Phys. D, 237 (2008), 3186-3196.
doi: 10.1016/j.physd.2008.08.011. |
[14] |
W. Just, et al., More phase transitions in digraph systems,, work in progress., ().
|
[15] |
S. A. Kauffman, "The Origins of Order: Self-Organization and Selection in Evolution," Oxford University Press, Oxford, UK, 1993. |
[16] |
S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol., 22 (1969), 437-467.
doi: 10.1016/0022-5193(69)90015-0. |
[17] |
E. Landau, "Handbuch der Lehre von der Verteilung der Primzahlen," Chelsea Publishing Co., 1974. |
[18] |
G. Laurent, Dynamical representation of odors by oscillating and evolving neural assemblies, Trends Neurosci., 19 (1996), 489-496.
doi: 10.1016/S0166-2236(96)10054-0. |
[19] |
O. Mazor and G. Laurent, Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons, Neuron, 48 (2005), 661-673.
doi: 10.1016/j.neuron.2005.09.032. |
[20] |
E. Plahte, T. Mestl and S. W. Omholt, Feedback loops, stability and multistationarity in dynamical systems, J. Biol. Syst., 3 (1995), 409-413.
doi: 10.1142/S0218339095000381. |
[21] |
É. Remy, P. Ruet and D. Thieffry, Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework, Adv. in Appl. Math., 41 (2008), 335-350.
doi: 10.1016/j.aam.2007.11.003. |
[22] |
E. H. Snoussi, Necessary conditions for multistationarity and stable periodicity, J. Biol. Syst., 6 (1998), 3-9.
doi: 10.1142/S0218339098000042. |
[23] |
D. Terman, S. Ahn, X. Wang and W. Just, Reducing neuronal networks to discrete dynamics, Phys. D, 237 (2008), 324-338.
doi: 10.1016/j.physd.2007.09.011. |
[24] |
D. Terman, A. Bose and N. Kopell, Functional reorganization in thalamocortical networks: Transition between spindling and delta sleep rhythms, Proc. Nat. Acad. Sci. U.S.A., 93 (1996), 15417-15422.
doi: 10.1073/pnas.93.26.15417. |
[25] |
D. Thieffry, Dynamical roles of biological regulatory circuits, Brief. Bioinform., 8 (2007), 220-225.
doi: 10.1093/bib/bbm028. |
[26] |
R. Thomas and R. D'Ari, "Biological Feedback," CRC Press, 1990. |
show all references
References:
[1] |
S. Ahn, "Transient and Attractor Dynamics in Models for Odor Discrimination," Ph.D thesis, The Ohio State University, 2010. |
[2] |
S. Ahn, B. H. Smith, A. Borisyuk and D. Terman, Analyzing neuronal networks using discrete-time dynamics, Phys. D, 239 (2010), 515-528.
doi: 10.1016/j.physd.2009.12.011. |
[3] |
M. Bazhenov, M. Stopfer, M. Rabinovich, R. Huerta, H. D. Abarbanel, T. J. Sejnowski and G. Laurent, Model of transient oscillatory synchronization in the locust antennal lobe, Neuron, 30 (2001), 553-567.
doi: 10.1016/S0896-6273(01)00284-7. |
[4] |
J. Best, C. Park, D. Terman and C. J. Wilson, Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks, J. Comput. Neurosci., 23 (2007), 217-235.
doi: 10.1007/s10827-007-0029-7. |
[5] |
M. D. Bevan, P. J. Magill, D. Terman, J. P. Bolam and C. J. Wilson, Move to the rhythm: Oscillations in the subthalamic nucleus-external globus pallidus network, Trends Neurosci., 25 (2002), 525-531.
doi: 10.1016/S0166-2236(02)02235-X. |
[6] |
G. Craciun, Y. Tang and M. Feinberg, Understanding bistability in complex enzyme-driven reaction networks, Proc. Nat. Acad. Sci. U.S.A., 103 (2006), 8697-8702.
doi: 10.1073/pnas.0602767103. |
[7] |
A. Destexhe and T. J. Sejnowski, Synchronized oscillations in thalamic networks: Insights from modeling studies, in "Thalamus" (ed. M. Steriade, E. G. Jones and D. A. McCormick), Elsevier, (1997), 331-371. |
[8] |
A. Elashvili, M. Jibladze and D. Pataraia, Combinatorics of Necklaces and "Hermite Reciprocity," J. Algebraic Combin., 10 (1999), 173-188.
doi: 10.1023/A:1018727630642. |
[9] |
R. Fdez Galán, S. Sachse, C. G. Galizia and A. V. Herz, Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification, Neural Comput., 16 (2004), 999-1012. |
[10] |
P. C. Fernandez, F. F. Locatelli, N. Person-Rennell, G. Deleo and B. H. Smith, Associative conditioning tunes transient dynamics of early olfactory processing, J. Neurosci., 29 (2009), 10191-10202.
doi: 10.1523/JNEUROSCI.1874-09.2009. |
[11] |
L. Glass, A topological theorem for nonlinear dynamics in chemical and ecological networks, Proc. Nat. Acad. Sci. U.S.A., 72 (1975), 2856-2857.
doi: 10.1073/pnas.72.8.2856. |
[12] |
D. Golomb, X. J. Wang and J. Rinzel, Synchronization properties of spindle oscillations in a thalamic reticular nucleus model, J. Neurophysiol., 72 (1994), 1109-1126. |
[13] |
W. Just, S. Ahn and D. Terman, Minimal attractors in digraph system models of neuronal networks, Phys. D, 237 (2008), 3186-3196.
doi: 10.1016/j.physd.2008.08.011. |
[14] |
W. Just, et al., More phase transitions in digraph systems,, work in progress., ().
|
[15] |
S. A. Kauffman, "The Origins of Order: Self-Organization and Selection in Evolution," Oxford University Press, Oxford, UK, 1993. |
[16] |
S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol., 22 (1969), 437-467.
doi: 10.1016/0022-5193(69)90015-0. |
[17] |
E. Landau, "Handbuch der Lehre von der Verteilung der Primzahlen," Chelsea Publishing Co., 1974. |
[18] |
G. Laurent, Dynamical representation of odors by oscillating and evolving neural assemblies, Trends Neurosci., 19 (1996), 489-496.
doi: 10.1016/S0166-2236(96)10054-0. |
[19] |
O. Mazor and G. Laurent, Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons, Neuron, 48 (2005), 661-673.
doi: 10.1016/j.neuron.2005.09.032. |
[20] |
E. Plahte, T. Mestl and S. W. Omholt, Feedback loops, stability and multistationarity in dynamical systems, J. Biol. Syst., 3 (1995), 409-413.
doi: 10.1142/S0218339095000381. |
[21] |
É. Remy, P. Ruet and D. Thieffry, Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework, Adv. in Appl. Math., 41 (2008), 335-350.
doi: 10.1016/j.aam.2007.11.003. |
[22] |
E. H. Snoussi, Necessary conditions for multistationarity and stable periodicity, J. Biol. Syst., 6 (1998), 3-9.
doi: 10.1142/S0218339098000042. |
[23] |
D. Terman, S. Ahn, X. Wang and W. Just, Reducing neuronal networks to discrete dynamics, Phys. D, 237 (2008), 324-338.
doi: 10.1016/j.physd.2007.09.011. |
[24] |
D. Terman, A. Bose and N. Kopell, Functional reorganization in thalamocortical networks: Transition between spindling and delta sleep rhythms, Proc. Nat. Acad. Sci. U.S.A., 93 (1996), 15417-15422.
doi: 10.1073/pnas.93.26.15417. |
[25] |
D. Thieffry, Dynamical roles of biological regulatory circuits, Brief. Bioinform., 8 (2007), 220-225.
doi: 10.1093/bib/bbm028. |
[26] |
R. Thomas and R. D'Ari, "Biological Feedback," CRC Press, 1990. |
[1] |
Nataša Djurdjevac Conrad, Ralf Banisch, Christof Schütte. Modularity of directed networks: Cycle decomposition approach. Journal of Computational Dynamics, 2015, 2 (1) : 1-24. doi: 10.3934/jcd.2015.2.1 |
[2] |
Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899 |
[3] |
Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 167-198. doi: 10.3934/dcdsb.2021036 |
[4] |
Howard A. Levine, Yeon-Jung Seo, Marit Nilsen-Hamilton. A discrete dynamical system arising in molecular biology. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2091-2151. doi: 10.3934/dcdsb.2012.17.2091 |
[5] |
Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447 |
[6] |
T. Jäger. Neuronal coding of pacemaker neurons -- A random dynamical systems approach. Communications on Pure and Applied Analysis, 2011, 10 (3) : 995-1009. doi: 10.3934/cpaa.2011.10.995 |
[7] |
S. Mohamad, K. Gopalsamy. Neuronal dynamics in time varying enviroments: Continuous and discrete time models. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 841-860. doi: 10.3934/dcds.2000.6.841 |
[8] |
Gheorghe Craciun, Baltazar Aguda, Avner Friedman. Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 473-485. doi: 10.3934/mbe.2005.2.473 |
[9] |
Mădălina Roxana Buneci. Morphisms of discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 91-107. doi: 10.3934/dcds.2011.29.91 |
[10] |
Chiun-Chuan Chen, Ting-Yang Hsiao, Li-Chang Hung. Discrete N-barrier maximum principle for a lattice dynamical system arising in competition models. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 153-187. doi: 10.3934/dcds.2020007 |
[11] |
Lin Wang, James Watmough, Fang Yu. Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions. Mathematical Biosciences & Engineering, 2015, 12 (4) : 699-715. doi: 10.3934/mbe.2015.12.699 |
[12] |
Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047 |
[13] |
Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893 |
[14] |
Fang Wu, Lihong Huang, Jiafu Wang. Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021264 |
[15] |
P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692 |
[16] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809 |
[17] |
Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229 |
[18] |
Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757 |
[19] |
A. Azhagappan, T. Deepa. Transient analysis of N-policy queue with system disaster repair preventive maintenance re-service balking closedown and setup times. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2843-2856. doi: 10.3934/jimo.2019083 |
[20] |
Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]