July  2012, 17(5): 1365-1381. doi: 10.3934/dcdsb.2012.17.1365

Digraphs vs. dynamics in discrete models of neuronal networks

1. 

Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, IN 46202, United States

2. 

Department of Mathematics, Ohio University, OH 45701, United States

Received  January 2011 Revised  December 2011 Published  March 2012

It has recently been shown that discrete-time finite-state models can reliably reproduce the ordinary differential equation (ODE) dynamics of certain neuronal networks. We study which dynamics are possible in these discrete models for certain types of network connectivities. In particular we are interested in the number of different attractors and bounds on the lengths of attractors and transients. We completely characterize these properties for cyclic connectivities and derive additional results on the lengths of attractors in more general classes of networks.
Citation: Sungwoo Ahn, Winfried Just. Digraphs vs. dynamics in discrete models of neuronal networks. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1365-1381. doi: 10.3934/dcdsb.2012.17.1365
References:
[1]

S. Ahn, "Transient and Attractor Dynamics in Models for Odor Discrimination,", Ph.D thesis, (2010).   Google Scholar

[2]

S. Ahn, B. H. Smith, A. Borisyuk and D. Terman, Analyzing neuronal networks using discrete-time dynamics,, Phys. D, 239 (2010), 515.  doi: 10.1016/j.physd.2009.12.011.  Google Scholar

[3]

M. Bazhenov, M. Stopfer, M. Rabinovich, R. Huerta, H. D. Abarbanel, T. J. Sejnowski and G. Laurent, Model of transient oscillatory synchronization in the locust antennal lobe,, Neuron, 30 (2001), 553.  doi: 10.1016/S0896-6273(01)00284-7.  Google Scholar

[4]

J. Best, C. Park, D. Terman and C. J. Wilson, Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks,, J. Comput. Neurosci., 23 (2007), 217.  doi: 10.1007/s10827-007-0029-7.  Google Scholar

[5]

M. D. Bevan, P. J. Magill, D. Terman, J. P. Bolam and C. J. Wilson, Move to the rhythm: Oscillations in the subthalamic nucleus-external globus pallidus network,, Trends Neurosci., 25 (2002), 525.  doi: 10.1016/S0166-2236(02)02235-X.  Google Scholar

[6]

G. Craciun, Y. Tang and M. Feinberg, Understanding bistability in complex enzyme-driven reaction networks,, Proc. Nat. Acad. Sci. U.S.A., 103 (2006), 8697.  doi: 10.1073/pnas.0602767103.  Google Scholar

[7]

A. Destexhe and T. J. Sejnowski, Synchronized oscillations in thalamic networks: Insights from modeling studies,, in, (1997), 331.   Google Scholar

[8]

A. Elashvili, M. Jibladze and D. Pataraia, Combinatorics of Necklaces and "Hermite Reciprocity,", J. Algebraic Combin., 10 (1999), 173.  doi: 10.1023/A:1018727630642.  Google Scholar

[9]

R. Fdez Galán, S. Sachse, C. G. Galizia and A. V. Herz, Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification,, Neural Comput., 16 (2004), 999.   Google Scholar

[10]

P. C. Fernandez, F. F. Locatelli, N. Person-Rennell, G. Deleo and B. H. Smith, Associative conditioning tunes transient dynamics of early olfactory processing,, J. Neurosci., 29 (2009), 10191.  doi: 10.1523/JNEUROSCI.1874-09.2009.  Google Scholar

[11]

L. Glass, A topological theorem for nonlinear dynamics in chemical and ecological networks,, Proc. Nat. Acad. Sci. U.S.A., 72 (1975), 2856.  doi: 10.1073/pnas.72.8.2856.  Google Scholar

[12]

D. Golomb, X. J. Wang and J. Rinzel, Synchronization properties of spindle oscillations in a thalamic reticular nucleus model,, J. Neurophysiol., 72 (1994), 1109.   Google Scholar

[13]

W. Just, S. Ahn and D. Terman, Minimal attractors in digraph system models of neuronal networks,, Phys. D, 237 (2008), 3186.  doi: 10.1016/j.physd.2008.08.011.  Google Scholar

[14]

W. Just, et al., More phase transitions in digraph systems,, work in progress., ().   Google Scholar

[15]

S. A. Kauffman, "The Origins of Order: Self-Organization and Selection in Evolution,", Oxford University Press, (1993).   Google Scholar

[16]

S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets,, J. Theor. Biol., 22 (1969), 437.  doi: 10.1016/0022-5193(69)90015-0.  Google Scholar

[17]

E. Landau, "Handbuch der Lehre von der Verteilung der Primzahlen,", Chelsea Publishing Co., (1974).   Google Scholar

[18]

G. Laurent, Dynamical representation of odors by oscillating and evolving neural assemblies,, Trends Neurosci., 19 (1996), 489.  doi: 10.1016/S0166-2236(96)10054-0.  Google Scholar

[19]

O. Mazor and G. Laurent, Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons,, Neuron, 48 (2005), 661.  doi: 10.1016/j.neuron.2005.09.032.  Google Scholar

[20]

E. Plahte, T. Mestl and S. W. Omholt, Feedback loops, stability and multistationarity in dynamical systems,, J. Biol. Syst., 3 (1995), 409.  doi: 10.1142/S0218339095000381.  Google Scholar

[21]

É. Remy, P. Ruet and D. Thieffry, Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework,, Adv. in Appl. Math., 41 (2008), 335.  doi: 10.1016/j.aam.2007.11.003.  Google Scholar

[22]

E. H. Snoussi, Necessary conditions for multistationarity and stable periodicity,, J. Biol. Syst., 6 (1998), 3.  doi: 10.1142/S0218339098000042.  Google Scholar

[23]

D. Terman, S. Ahn, X. Wang and W. Just, Reducing neuronal networks to discrete dynamics,, Phys. D, 237 (2008), 324.  doi: 10.1016/j.physd.2007.09.011.  Google Scholar

[24]

D. Terman, A. Bose and N. Kopell, Functional reorganization in thalamocortical networks: Transition between spindling and delta sleep rhythms,, Proc. Nat. Acad. Sci. U.S.A., 93 (1996), 15417.  doi: 10.1073/pnas.93.26.15417.  Google Scholar

[25]

D. Thieffry, Dynamical roles of biological regulatory circuits,, Brief. Bioinform., 8 (2007), 220.  doi: 10.1093/bib/bbm028.  Google Scholar

[26]

R. Thomas and R. D'Ari, "Biological Feedback,", CRC Press, (1990).   Google Scholar

show all references

References:
[1]

S. Ahn, "Transient and Attractor Dynamics in Models for Odor Discrimination,", Ph.D thesis, (2010).   Google Scholar

[2]

S. Ahn, B. H. Smith, A. Borisyuk and D. Terman, Analyzing neuronal networks using discrete-time dynamics,, Phys. D, 239 (2010), 515.  doi: 10.1016/j.physd.2009.12.011.  Google Scholar

[3]

M. Bazhenov, M. Stopfer, M. Rabinovich, R. Huerta, H. D. Abarbanel, T. J. Sejnowski and G. Laurent, Model of transient oscillatory synchronization in the locust antennal lobe,, Neuron, 30 (2001), 553.  doi: 10.1016/S0896-6273(01)00284-7.  Google Scholar

[4]

J. Best, C. Park, D. Terman and C. J. Wilson, Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks,, J. Comput. Neurosci., 23 (2007), 217.  doi: 10.1007/s10827-007-0029-7.  Google Scholar

[5]

M. D. Bevan, P. J. Magill, D. Terman, J. P. Bolam and C. J. Wilson, Move to the rhythm: Oscillations in the subthalamic nucleus-external globus pallidus network,, Trends Neurosci., 25 (2002), 525.  doi: 10.1016/S0166-2236(02)02235-X.  Google Scholar

[6]

G. Craciun, Y. Tang and M. Feinberg, Understanding bistability in complex enzyme-driven reaction networks,, Proc. Nat. Acad. Sci. U.S.A., 103 (2006), 8697.  doi: 10.1073/pnas.0602767103.  Google Scholar

[7]

A. Destexhe and T. J. Sejnowski, Synchronized oscillations in thalamic networks: Insights from modeling studies,, in, (1997), 331.   Google Scholar

[8]

A. Elashvili, M. Jibladze and D. Pataraia, Combinatorics of Necklaces and "Hermite Reciprocity,", J. Algebraic Combin., 10 (1999), 173.  doi: 10.1023/A:1018727630642.  Google Scholar

[9]

R. Fdez Galán, S. Sachse, C. G. Galizia and A. V. Herz, Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification,, Neural Comput., 16 (2004), 999.   Google Scholar

[10]

P. C. Fernandez, F. F. Locatelli, N. Person-Rennell, G. Deleo and B. H. Smith, Associative conditioning tunes transient dynamics of early olfactory processing,, J. Neurosci., 29 (2009), 10191.  doi: 10.1523/JNEUROSCI.1874-09.2009.  Google Scholar

[11]

L. Glass, A topological theorem for nonlinear dynamics in chemical and ecological networks,, Proc. Nat. Acad. Sci. U.S.A., 72 (1975), 2856.  doi: 10.1073/pnas.72.8.2856.  Google Scholar

[12]

D. Golomb, X. J. Wang and J. Rinzel, Synchronization properties of spindle oscillations in a thalamic reticular nucleus model,, J. Neurophysiol., 72 (1994), 1109.   Google Scholar

[13]

W. Just, S. Ahn and D. Terman, Minimal attractors in digraph system models of neuronal networks,, Phys. D, 237 (2008), 3186.  doi: 10.1016/j.physd.2008.08.011.  Google Scholar

[14]

W. Just, et al., More phase transitions in digraph systems,, work in progress., ().   Google Scholar

[15]

S. A. Kauffman, "The Origins of Order: Self-Organization and Selection in Evolution,", Oxford University Press, (1993).   Google Scholar

[16]

S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets,, J. Theor. Biol., 22 (1969), 437.  doi: 10.1016/0022-5193(69)90015-0.  Google Scholar

[17]

E. Landau, "Handbuch der Lehre von der Verteilung der Primzahlen,", Chelsea Publishing Co., (1974).   Google Scholar

[18]

G. Laurent, Dynamical representation of odors by oscillating and evolving neural assemblies,, Trends Neurosci., 19 (1996), 489.  doi: 10.1016/S0166-2236(96)10054-0.  Google Scholar

[19]

O. Mazor and G. Laurent, Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons,, Neuron, 48 (2005), 661.  doi: 10.1016/j.neuron.2005.09.032.  Google Scholar

[20]

E. Plahte, T. Mestl and S. W. Omholt, Feedback loops, stability and multistationarity in dynamical systems,, J. Biol. Syst., 3 (1995), 409.  doi: 10.1142/S0218339095000381.  Google Scholar

[21]

É. Remy, P. Ruet and D. Thieffry, Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework,, Adv. in Appl. Math., 41 (2008), 335.  doi: 10.1016/j.aam.2007.11.003.  Google Scholar

[22]

E. H. Snoussi, Necessary conditions for multistationarity and stable periodicity,, J. Biol. Syst., 6 (1998), 3.  doi: 10.1142/S0218339098000042.  Google Scholar

[23]

D. Terman, S. Ahn, X. Wang and W. Just, Reducing neuronal networks to discrete dynamics,, Phys. D, 237 (2008), 324.  doi: 10.1016/j.physd.2007.09.011.  Google Scholar

[24]

D. Terman, A. Bose and N. Kopell, Functional reorganization in thalamocortical networks: Transition between spindling and delta sleep rhythms,, Proc. Nat. Acad. Sci. U.S.A., 93 (1996), 15417.  doi: 10.1073/pnas.93.26.15417.  Google Scholar

[25]

D. Thieffry, Dynamical roles of biological regulatory circuits,, Brief. Bioinform., 8 (2007), 220.  doi: 10.1093/bib/bbm028.  Google Scholar

[26]

R. Thomas and R. D'Ari, "Biological Feedback,", CRC Press, (1990).   Google Scholar

[1]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[2]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[3]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[4]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[5]

Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2020159

[6]

Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021016

[7]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[8]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[9]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[10]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[11]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[12]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[13]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[14]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[15]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[16]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[17]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[18]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[19]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[20]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]