July  2012, 17(5): 1383-1405. doi: 10.3934/dcdsb.2012.17.1383

Convergence results for the vector penalty-projection and two-step artificial compressibility methods

1. 

Aix-Marseille Université, Laboratoire d’Analyse, Topologie, Probabilités - CNRS UMR7353, Centre de Mathématiques et Informatique, 13453 Marseille cedex 13, France

2. 

Université de Bordeaux & IPB, Institut Mathématiques de Bordeaux - CNRS UMR5251, ENSEIRB-MATMECA, Talence, France

Received  July 2011 Revised  December 2011 Published  March 2012

In this paper, we propose and analyze a new artificial compressibility splitting method which is issued from the recent vector penalty-projection method for the numerical solution of unsteady incompressible viscous flows introduced in [1], [2] and [3]. This method may be viewed as an hybrid two-step prediction-correction method combining an artificial compressibility method and an augmented Lagrangian method without inner iteration. The perturbed system can be viewed as a new approximation to the incompressible Navier-Stokes equations. In the main result, we establish the convergence of solutions to the weak solutions of the Navier-Stokes equations when the penalty parameter tends to zero.
Citation: Philippe Angot, Pierre Fabrie. Convergence results for the vector penalty-projection and two-step artificial compressibility methods. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1383-1405. doi: 10.3934/dcdsb.2012.17.1383
References:
[1]

Ph. Angot, J.-P. Caltagirone and P. Fabrie, Vector penalty-projection method for the solution of unsteady incompressible flows,, in, (2008), 169.   Google Scholar

[2]

Ph. Angot, J.-P. Caltagirone and P. Fabrie, A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems,, in, 4 (2011), 6.   Google Scholar

[3]

Ph. Angot, J.-P. Caltagirone and P. Fabrie, A new fast method to compute saddle-points in constrained optimization and applications,, Applied Mathematics Letters, 25 (2012), 245.  doi: 10.1016/j.aml.2011.08.015.  Google Scholar

[4]

Ph. Angot, J.-P. Caltagirone and P. Fabrie, A fast vector penalty-projection method for in-compressible non-homogeneous or multiphase Navier-stokes problems,, Applied Mathematics Letters, (2012).  doi: 10.1016/j.aml.2012.01.037.  Google Scholar

[5]

F. Boyer and P. Fabrie, "Éléments d'Analyse pour l'Étude de quelques Modèles d'Écoulements de Fluides Visqueux Incompressibles,", Mathématiques & Applications, 52 (2006).   Google Scholar

[6]

A. J. Chorin, A numerical method for solving incompressible viscous flow problems,, J. Comput. Phys., 2 (1967), 12.  doi: 10.1016/0021-9991(67)90037-X.  Google Scholar

[7]

A. J. Chorin, Numerical solution of the Navier-Stokes equations,, Math. Comput., 22 (1968), 745.  doi: 10.1090/S0025-5718-1968-0242392-2.  Google Scholar

[8]

C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation,, Annali della Scuolo Normale Superiore di Pisa, 5 (1978), 28.   Google Scholar

[9]

V. Girault and P.-A. Raviart, "Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms,", Springer Series in Comput. Math., 5 (1986).   Google Scholar

[10]

J.-L. Guermond, P. D. Minev and J. Shen, An overview of projection methods for incompressible flows,, Comput. Meth. Appl. Mech. Engrg., 195 (2006), 6011.  doi: 10.1016/j.cma.2005.10.010.  Google Scholar

[11]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", 2nd edition, (1969).   Google Scholar

[12]

J. Leray, Essai sur les mouvements plans d'un liquide visqueux que limitent des parois,, J. Math. Pures Appl., 13 (1934), 331.   Google Scholar

[13]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod & Gauthier-Villars, (1969).   Google Scholar

[14]

J. Shen, On error estimates of the penalty method for unsteady Navier-Stokes equations,, SIAM J. Numer. Anal., 32 (1995), 386.  doi: 10.1137/0732016.  Google Scholar

[15]

J. Shen, On a new pseudocompressibility method for the incompressible Navier-Stokes equations,, Appl. Numer. Math., 21 (1996), 71.  doi: 10.1016/0168-9274(95)00132-8.  Google Scholar

[16]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65.   Google Scholar

[17]

R. Temam, Une méthode d'approximation de la solution des équations de Navier-Stokes,, Bull. Soc. Math. France, 96 (1968), 115.   Google Scholar

[18]

R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. I,, Arch. Ration. Mech. Anal., 32 (1969), 135.   Google Scholar

[19]

R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II,, Arch. Ration. Mech. Anal., 33 (1969), 377.   Google Scholar

[20]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", 3rd edition, 2 (1984).   Google Scholar

show all references

References:
[1]

Ph. Angot, J.-P. Caltagirone and P. Fabrie, Vector penalty-projection method for the solution of unsteady incompressible flows,, in, (2008), 169.   Google Scholar

[2]

Ph. Angot, J.-P. Caltagirone and P. Fabrie, A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems,, in, 4 (2011), 6.   Google Scholar

[3]

Ph. Angot, J.-P. Caltagirone and P. Fabrie, A new fast method to compute saddle-points in constrained optimization and applications,, Applied Mathematics Letters, 25 (2012), 245.  doi: 10.1016/j.aml.2011.08.015.  Google Scholar

[4]

Ph. Angot, J.-P. Caltagirone and P. Fabrie, A fast vector penalty-projection method for in-compressible non-homogeneous or multiphase Navier-stokes problems,, Applied Mathematics Letters, (2012).  doi: 10.1016/j.aml.2012.01.037.  Google Scholar

[5]

F. Boyer and P. Fabrie, "Éléments d'Analyse pour l'Étude de quelques Modèles d'Écoulements de Fluides Visqueux Incompressibles,", Mathématiques & Applications, 52 (2006).   Google Scholar

[6]

A. J. Chorin, A numerical method for solving incompressible viscous flow problems,, J. Comput. Phys., 2 (1967), 12.  doi: 10.1016/0021-9991(67)90037-X.  Google Scholar

[7]

A. J. Chorin, Numerical solution of the Navier-Stokes equations,, Math. Comput., 22 (1968), 745.  doi: 10.1090/S0025-5718-1968-0242392-2.  Google Scholar

[8]

C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation,, Annali della Scuolo Normale Superiore di Pisa, 5 (1978), 28.   Google Scholar

[9]

V. Girault and P.-A. Raviart, "Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms,", Springer Series in Comput. Math., 5 (1986).   Google Scholar

[10]

J.-L. Guermond, P. D. Minev and J. Shen, An overview of projection methods for incompressible flows,, Comput. Meth. Appl. Mech. Engrg., 195 (2006), 6011.  doi: 10.1016/j.cma.2005.10.010.  Google Scholar

[11]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", 2nd edition, (1969).   Google Scholar

[12]

J. Leray, Essai sur les mouvements plans d'un liquide visqueux que limitent des parois,, J. Math. Pures Appl., 13 (1934), 331.   Google Scholar

[13]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod & Gauthier-Villars, (1969).   Google Scholar

[14]

J. Shen, On error estimates of the penalty method for unsteady Navier-Stokes equations,, SIAM J. Numer. Anal., 32 (1995), 386.  doi: 10.1137/0732016.  Google Scholar

[15]

J. Shen, On a new pseudocompressibility method for the incompressible Navier-Stokes equations,, Appl. Numer. Math., 21 (1996), 71.  doi: 10.1016/0168-9274(95)00132-8.  Google Scholar

[16]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65.   Google Scholar

[17]

R. Temam, Une méthode d'approximation de la solution des équations de Navier-Stokes,, Bull. Soc. Math. France, 96 (1968), 115.   Google Scholar

[18]

R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. I,, Arch. Ration. Mech. Anal., 32 (1969), 135.   Google Scholar

[19]

R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II,, Arch. Ration. Mech. Anal., 33 (1969), 377.   Google Scholar

[20]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", 3rd edition, 2 (1984).   Google Scholar

[1]

Konstantinos Chrysafinos. Error estimates for time-discretizations for the velocity tracking problem for Navier-Stokes flows by penalty methods. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1077-1096. doi: 10.3934/dcdsb.2006.6.1077

[2]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[3]

Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495

[4]

Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369

[5]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[6]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[7]

Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109

[8]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[9]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[10]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51

[11]

Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial & Management Optimization, 2007, 3 (2) : 381-398. doi: 10.3934/jimo.2007.3.381

[12]

Zhongwen Chen, Songqiang Qiu, Yujie Jiao. A penalty-free method for equality constrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (2) : 391-409. doi: 10.3934/jimo.2013.9.391

[13]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[14]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations & Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147

[15]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[16]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[17]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[18]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[19]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[20]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]