Advanced Search
Article Contents
Article Contents

A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations

Abstract Related Papers Cited by
  • We consider the Maxwell-Stefan model of diffusion in a multicomponent gaseous mixture. After focusing on the main differences with the Fickian diffusion model, we study the equations governing a three-component gas mixture. Mostly in the case of a tridiagonal diffusion matrix, we provide a qualitative and quantitative mathematical analysis of the model. We develop moreover a standard explicit numerical scheme and investigate its main properties. We eventually include some numerical simulations underlining the uphill diffusion phenomenon.
    Mathematics Subject Classification: Primary: 35Q35, 35B40; Secondary: 65M06.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Bebendorf, A note on the Poincaré inequality for convex domains, Z. Anal. Anwendungen, 22 (2003), 751-756.doi: 10.4171/ZAA/1170.


    M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame, Conservative cross diffusions and pattern formation through relaxation, J. Math. Pures Appl. (9), 92 (2009), 651-667.doi: 10.1016/j.matpur.2009.05.003.


    L. Boudin, D. Götz and B. Grec, Diffusion models of multicomponent mixtures in the lung, in "CEMRACS 2009: Mathematical Modelling in Medicine," ESAIM Proc., 30, EDP Sci., Les Ulis, (2010), 90-103.


    L. Boudin, B. Grec and F. Salvarani, The Maxwell-Stefan diffusion limit for a kinetic model of mixtures, HAL preprint, submitted, 2011. Available from: http://hal.archives-ouvertes.fr/hal-00554744.


    H. K. Chang, Multicomponent diffusion in the lung, Fed. Proc., 39 (1980), 2759-2764.


    L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., 36 (2004), 301-322.


    J. Crank, "The Mathematics of Diffusion,'' 2nd edition, Clarendon Press, Oxford, 1975.


    H. Darcy, "Les Fontaines Publiques de la Ville de Dijon,'' V. Dalmont, Paris, 1856.


    J. B. Duncan and H. L. Toor, An experimental study of three component gas diffusion, AIChE Journal, 8 (1962), 38-41.


    A. Ern and V. Giovangigli, "Multicomponent Transport Algorithms,'' Lecture Notes in Physics, New Series m: Monographs, 24, Springer-Verlag, Berlin, 1994.


    A. Ern and V. Giovangigli, Projected iterative algorithms with application to multicomponent transport, Linear Algebra Appl., 250 (1997), 289-315.doi: 10.1016/0024-3795(95)00502-1.


    L. C. Evans, "Partial Differential Equations,'' 2nd edition, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010.


    A. Fick, On liquid diffusion, Phil. Mag., 10 (1855), 30-39.


    A. Fick, Über Diffusion, Poggendorff's Annalen der Physik und Chemie, 94 (1855), 59-86.doi: 10.1002/andp.18551700105.


    V. Giovangigli, Convergent iterative methods for multicomponent diffusion, Impact Comput. Sci. Engrg., 3 (1991), 244-276.doi: 10.1016/0899-8248(91)90010-R.


    V. Giovangigli, "Multicomponent Flow Modeling,'' Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999.doi: 10.1007/978-1-4612-1580-6.


    R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci., 52 (1997), 861-911.doi: 10.1016/S0009-2509(96)00458-7.


    O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,'' Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1967.


    Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.doi: 10.1006/jdeq.1996.0157.


    J. C. Maxwell, On the dynamical theory of gases, Phil. Trans. R. Soc., 157 (1866), 49-88.doi: 10.1098/rstl.1867.0004.


    L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal., 5 (1960), 286-292.doi: 10.1007/BF00252910.


    J. Stefan, Über das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen, Akad. Wiss. Wien, 63 (1871), 63-124.


    M. Thiriet, D. Douguet, J.-C. Bonnet, C. Canonne and C. Hatzfeld, The effect on gas mixing of a He-$\mboxO_2$ mixture in chronic obstructive lung diseases, Bull. Eur. Physiopathol. Respir., 15 (1979), 1053-1068.


    J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,'' Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, Oxford, 2007.


    F. A. Williams, "Combustion Theory,'' 2nd edition, Benjamin Cummings, 1985.

  • 加载中

Article Metrics

HTML views() PDF downloads(158) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint