July  2012, 17(5): 1427-1440. doi: 10.3934/dcdsb.2012.17.1427

A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations

1. 

UPMC Univ Paris 06, UMR 7598 LJLL, Paris, F-75005

2. 

INRIA Paris-Rocquencourt, REO Project team, BP 105, 78153 Le Chesnay, France, France

Received  June 2010 Revised  June 2011 Published  March 2012

We consider the Maxwell-Stefan model of diffusion in a multicomponent gaseous mixture. After focusing on the main differences with the Fickian diffusion model, we study the equations governing a three-component gas mixture. Mostly in the case of a tridiagonal diffusion matrix, we provide a qualitative and quantitative mathematical analysis of the model. We develop moreover a standard explicit numerical scheme and investigate its main properties. We eventually include some numerical simulations underlining the uphill diffusion phenomenon.
Citation: Laurent Boudin, Bérénice Grec, Francesco Salvarani. A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1427-1440. doi: 10.3934/dcdsb.2012.17.1427
References:
[1]

M. Bebendorf, A note on the Poincaré inequality for convex domains,, Z. Anal. Anwendungen, 22 (2003), 751.  doi: 10.4171/ZAA/1170.  Google Scholar

[2]

M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame, Conservative cross diffusions and pattern formation through relaxation,, J. Math. Pures Appl. (9), 92 (2009), 651.  doi: 10.1016/j.matpur.2009.05.003.  Google Scholar

[3]

L. Boudin, D. Götz and B. Grec, Diffusion models of multicomponent mixtures in the lung,, in, 30 (2010), 90.   Google Scholar

[4]

L. Boudin, B. Grec and F. Salvarani, The Maxwell-Stefan diffusion limit for a kinetic model of mixtures,, HAL preprint, (2011).   Google Scholar

[5]

H. K. Chang, Multicomponent diffusion in the lung,, Fed. Proc., 39 (1980), 2759.   Google Scholar

[6]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion,, SIAM J. Math. Anal., 36 (2004), 301.   Google Scholar

[7]

J. Crank, "The Mathematics of Diffusion,'', 2nd edition, (1975).   Google Scholar

[8]

H. Darcy, "Les Fontaines Publiques de la Ville de Dijon,'', V. Dalmont, (1856).   Google Scholar

[9]

J. B. Duncan and H. L. Toor, An experimental study of three component gas diffusion,, AIChE Journal, 8 (1962), 38.   Google Scholar

[10]

A. Ern and V. Giovangigli, "Multicomponent Transport Algorithms,'', Lecture Notes in Physics, 24 (1994).   Google Scholar

[11]

A. Ern and V. Giovangigli, Projected iterative algorithms with application to multicomponent transport,, Linear Algebra Appl., 250 (1997), 289.  doi: 10.1016/0024-3795(95)00502-1.  Google Scholar

[12]

L. C. Evans, "Partial Differential Equations,'', 2nd edition, 19 (2010).   Google Scholar

[13]

A. Fick, On liquid diffusion,, Phil. Mag., 10 (1855), 30.   Google Scholar

[14]

A. Fick, Über Diffusion,, Poggendorff's Annalen der Physik und Chemie, 94 (1855), 59.  doi: 10.1002/andp.18551700105.  Google Scholar

[15]

V. Giovangigli, Convergent iterative methods for multicomponent diffusion,, Impact Comput. Sci. Engrg., 3 (1991), 244.  doi: 10.1016/0899-8248(91)90010-R.  Google Scholar

[16]

V. Giovangigli, "Multicomponent Flow Modeling,'', Modeling and Simulation in Science, (1999).  doi: 10.1007/978-1-4612-1580-6.  Google Scholar

[17]

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer,, Chem. Eng. Sci., 52 (1997), 861.  doi: 10.1016/S0009-2509(96)00458-7.  Google Scholar

[18]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,'', Translations of Mathematical Monographs, (1967).   Google Scholar

[19]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[20]

J. C. Maxwell, On the dynamical theory of gases,, Phil. Trans. R. Soc., 157 (1866), 49.  doi: 10.1098/rstl.1867.0004.  Google Scholar

[21]

L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains,, Arch. Rational Mech. Anal., 5 (1960), 286.  doi: 10.1007/BF00252910.  Google Scholar

[22]

J. Stefan, Über das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen,, Akad. Wiss. Wien, 63 (1871), 63.   Google Scholar

[23]

M. Thiriet, D. Douguet, J.-C. Bonnet, C. Canonne and C. Hatzfeld, The effect on gas mixing of a He-$\mboxO_2$ mixture in chronic obstructive lung diseases,, Bull. Eur. Physiopathol. Respir., 15 (1979), 1053.   Google Scholar

[24]

J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,'', Oxford Mathematical Monographs, (2007).   Google Scholar

[25]

F. A. Williams, "Combustion Theory,'', 2nd edition, (1985).   Google Scholar

show all references

References:
[1]

M. Bebendorf, A note on the Poincaré inequality for convex domains,, Z. Anal. Anwendungen, 22 (2003), 751.  doi: 10.4171/ZAA/1170.  Google Scholar

[2]

M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame, Conservative cross diffusions and pattern formation through relaxation,, J. Math. Pures Appl. (9), 92 (2009), 651.  doi: 10.1016/j.matpur.2009.05.003.  Google Scholar

[3]

L. Boudin, D. Götz and B. Grec, Diffusion models of multicomponent mixtures in the lung,, in, 30 (2010), 90.   Google Scholar

[4]

L. Boudin, B. Grec and F. Salvarani, The Maxwell-Stefan diffusion limit for a kinetic model of mixtures,, HAL preprint, (2011).   Google Scholar

[5]

H. K. Chang, Multicomponent diffusion in the lung,, Fed. Proc., 39 (1980), 2759.   Google Scholar

[6]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion,, SIAM J. Math. Anal., 36 (2004), 301.   Google Scholar

[7]

J. Crank, "The Mathematics of Diffusion,'', 2nd edition, (1975).   Google Scholar

[8]

H. Darcy, "Les Fontaines Publiques de la Ville de Dijon,'', V. Dalmont, (1856).   Google Scholar

[9]

J. B. Duncan and H. L. Toor, An experimental study of three component gas diffusion,, AIChE Journal, 8 (1962), 38.   Google Scholar

[10]

A. Ern and V. Giovangigli, "Multicomponent Transport Algorithms,'', Lecture Notes in Physics, 24 (1994).   Google Scholar

[11]

A. Ern and V. Giovangigli, Projected iterative algorithms with application to multicomponent transport,, Linear Algebra Appl., 250 (1997), 289.  doi: 10.1016/0024-3795(95)00502-1.  Google Scholar

[12]

L. C. Evans, "Partial Differential Equations,'', 2nd edition, 19 (2010).   Google Scholar

[13]

A. Fick, On liquid diffusion,, Phil. Mag., 10 (1855), 30.   Google Scholar

[14]

A. Fick, Über Diffusion,, Poggendorff's Annalen der Physik und Chemie, 94 (1855), 59.  doi: 10.1002/andp.18551700105.  Google Scholar

[15]

V. Giovangigli, Convergent iterative methods for multicomponent diffusion,, Impact Comput. Sci. Engrg., 3 (1991), 244.  doi: 10.1016/0899-8248(91)90010-R.  Google Scholar

[16]

V. Giovangigli, "Multicomponent Flow Modeling,'', Modeling and Simulation in Science, (1999).  doi: 10.1007/978-1-4612-1580-6.  Google Scholar

[17]

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer,, Chem. Eng. Sci., 52 (1997), 861.  doi: 10.1016/S0009-2509(96)00458-7.  Google Scholar

[18]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,'', Translations of Mathematical Monographs, (1967).   Google Scholar

[19]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[20]

J. C. Maxwell, On the dynamical theory of gases,, Phil. Trans. R. Soc., 157 (1866), 49.  doi: 10.1098/rstl.1867.0004.  Google Scholar

[21]

L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains,, Arch. Rational Mech. Anal., 5 (1960), 286.  doi: 10.1007/BF00252910.  Google Scholar

[22]

J. Stefan, Über das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen,, Akad. Wiss. Wien, 63 (1871), 63.   Google Scholar

[23]

M. Thiriet, D. Douguet, J.-C. Bonnet, C. Canonne and C. Hatzfeld, The effect on gas mixing of a He-$\mboxO_2$ mixture in chronic obstructive lung diseases,, Bull. Eur. Physiopathol. Respir., 15 (1979), 1053.   Google Scholar

[24]

J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,'', Oxford Mathematical Monographs, (2007).   Google Scholar

[25]

F. A. Williams, "Combustion Theory,'', 2nd edition, (1985).   Google Scholar

[1]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[2]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[3]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[4]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[5]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[6]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[7]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[8]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[9]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[10]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[11]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[12]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[13]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[14]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[15]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[16]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[17]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[18]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[19]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021085

[20]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (34)

[Back to Top]