July  2012, 17(5): 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions

1. 

College of Mathematics and Software Science, Sichuan Normal University, Chengdu, 610068, China

2. 

College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068

Received  June 2011 Revised  February 2012 Published  March 2012

This work is concerned with the asymptotic dynamical behavior for a weakly damped stochastic nonlinear wave equation with dynamical boundary conditions. The white noises appear both in the model and in the dynamical boundary condition. Since the energy relation of this stochastic system does not directly imply the a priori estimate of the solution, we propose a pseudo energy equation to infer almost sure boundedness of the solution. Then a unique invariant measure is shown to exist for the system.
Citation: Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441
References:
[1]

J. T. Beale, Spectral properties of an acoustic boundary condition,, Indiana Univ. Math. J., 25 (1976), 895.  doi: 10.1512/iumj.1976.25.25071.  Google Scholar

[2]

J. T. Beale, Acoustic scattering from locally reacting surfaces,, Indiana Univ. Math. J., 26 (1977), 199.  doi: 10.1512/iumj.1977.26.26015.  Google Scholar

[3]

P. Brune, J. Duan and B. Schmalfuss, Random dynamics of the Boussinesq system with dynamical boundary conditions,, Stochastic Analysis and Applications, 27 (2009), 1096.  doi: 10.1080/07362990902976546.  Google Scholar

[4]

P.-L. Chow, Stochastic wave equations with polynomial nonlinearity,, Ann. Appl. Probab., 12 (2002), 361.  doi: 10.1214/aoap/1015961168.  Google Scholar

[5]

P.-L. Chow, Asymptotics of solutions to semilinear stochastic wave equations,, Ann. Appl. Probab., 16 (2006), 757.  doi: 10.1214/105051606000000141.  Google Scholar

[6]

I. Chueshov and B. Schmalfuss, Parabolic stochastic partial differential equations with dynamical boundary conditions,, Differential Integral Equations, 17 (2004), 751.   Google Scholar

[7]

A. T. Cousin, C. L. Frota and N. A. Larkin, Global solvability and asymptotic behavior of a hyperbolic problem with acoustic boundary condition,, Funkcial. Ekvac., 44 (2001), 471.   Google Scholar

[8]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions,", Encyclopedia of Mathematics and its Applications, 44 (1992).   Google Scholar

[9]

G. Da Prato and J. Zabczyk, "Ergodicity for Infinite-Dimensional Systems,", London Mathematical Society Lecture Note Series, 229 (1996).   Google Scholar

[10]

X. Fan and Y. Wang, Fractal dimensional of attractors for a stochastic wave equation with nonlinear damping and white noise,, Stoch. Anal. Appl., 25 (2007), 381.  doi: 10.1080/07362990601139602.  Google Scholar

[11]

S. Frigeri, Attractors for semilinear damped wave equations with an acoustic boundary condition,, J. Evol. Equ., 10 (2010), 29.  doi: 10.1007/s00028-009-0039-1.  Google Scholar

[12]

C. L. Frota and J. A. Goldstein, Some nonlinear wave equations with acoustic boundary conditions,, Journal of Differential Equations, 164 (2000), 92.  doi: 10.1006/jdeq.1999.3743.  Google Scholar

[13]

S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions,, Advances in Differential Equations, 13 (2008), 1051.   Google Scholar

[14]

J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation,, Math. Z., 189 (1985), 487.  doi: 10.1007/BF01168155.  Google Scholar

[15]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{t t} =-Au +F(u)$,, Trans. Amer. Math. Soc., 192 (1974), 1.  doi: 10.2307/1996814.  Google Scholar

[16]

K. Lu and B. Schmalfuss, Invariant manifolds for stochastic wave equations,, J. Differential Equations, 236 (2007), 460.  doi: 10.1016/j.jde.2006.09.024.  Google Scholar

[17]

Y. Lv, W. Wang, Limiting dynamics for stochastic wave equations,, J. Differential Equations, 244 (2008), 1.  doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[18]

C. Mueller, Long time existence for the wave equation with a noise term,, Ann. Probab., 25 (1997), 133.  doi: 10.1214/aop/1024404282.  Google Scholar

[19]

D. Mugnolo, Abstract wave equations with acoustic boundary conditions,, Math. Nachr., 279 (2006), 299.  doi: 10.1002/mana.200310362.  Google Scholar

[20]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,, Israel J. Math., 22 (1975), 273.  doi: 10.1007/BF02761595.  Google Scholar

[21]

L. Popescu and A. Rodriguez-Bernal, On a singularly perturbed wave equation with dynamic boundary conditions,, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 389.  doi: 10.1017/S0308210500003279.  Google Scholar

[22]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness,", Academic Press [Harcourt Brace Jovanovich, (1975).   Google Scholar

[23]

W. A. Strauss, "Nonlinear Wave Equations,", CBMS Regional Conference Series in Math., 73 (1989).   Google Scholar

[24]

C. Sun, H. Gao, J. Duan and B. Schmalfuss, Rare events in the Boussinesq system with fluctuating dynamical boundary conditions,, J. Differential Equations, 248 (2010), 1269.  doi: 10.1016/j.jde.2009.10.003.  Google Scholar

[25]

G. Whitham, "Linear and Nonlinear Waves,", Pure and Applied Mathematics, (1974).   Google Scholar

[26]

W. Wang and J. Duan, Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions,, Commun. Math. Phys., 275 (2007), 163.  doi: 10.1007/s00220-007-0301-8.  Google Scholar

[27]

D. Yang and J. Duan, An impact of stochastic dynamic boundary conditions on the evolution of the Cahn-Hilliard system,, Stoch. Anal. Appl., 25 (2007), 613.  doi: 10.1080/07362990701282963.  Google Scholar

[28]

S. F. Zhou, F. Q. Yin and Z. G. Ouyang, Random attractor for damped nonlinear wave equations with white noise,, SIAM J. Appl. Dyn. Syst., 4 (2005), 883.  doi: 10.1137/050623097.  Google Scholar

show all references

References:
[1]

J. T. Beale, Spectral properties of an acoustic boundary condition,, Indiana Univ. Math. J., 25 (1976), 895.  doi: 10.1512/iumj.1976.25.25071.  Google Scholar

[2]

J. T. Beale, Acoustic scattering from locally reacting surfaces,, Indiana Univ. Math. J., 26 (1977), 199.  doi: 10.1512/iumj.1977.26.26015.  Google Scholar

[3]

P. Brune, J. Duan and B. Schmalfuss, Random dynamics of the Boussinesq system with dynamical boundary conditions,, Stochastic Analysis and Applications, 27 (2009), 1096.  doi: 10.1080/07362990902976546.  Google Scholar

[4]

P.-L. Chow, Stochastic wave equations with polynomial nonlinearity,, Ann. Appl. Probab., 12 (2002), 361.  doi: 10.1214/aoap/1015961168.  Google Scholar

[5]

P.-L. Chow, Asymptotics of solutions to semilinear stochastic wave equations,, Ann. Appl. Probab., 16 (2006), 757.  doi: 10.1214/105051606000000141.  Google Scholar

[6]

I. Chueshov and B. Schmalfuss, Parabolic stochastic partial differential equations with dynamical boundary conditions,, Differential Integral Equations, 17 (2004), 751.   Google Scholar

[7]

A. T. Cousin, C. L. Frota and N. A. Larkin, Global solvability and asymptotic behavior of a hyperbolic problem with acoustic boundary condition,, Funkcial. Ekvac., 44 (2001), 471.   Google Scholar

[8]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions,", Encyclopedia of Mathematics and its Applications, 44 (1992).   Google Scholar

[9]

G. Da Prato and J. Zabczyk, "Ergodicity for Infinite-Dimensional Systems,", London Mathematical Society Lecture Note Series, 229 (1996).   Google Scholar

[10]

X. Fan and Y. Wang, Fractal dimensional of attractors for a stochastic wave equation with nonlinear damping and white noise,, Stoch. Anal. Appl., 25 (2007), 381.  doi: 10.1080/07362990601139602.  Google Scholar

[11]

S. Frigeri, Attractors for semilinear damped wave equations with an acoustic boundary condition,, J. Evol. Equ., 10 (2010), 29.  doi: 10.1007/s00028-009-0039-1.  Google Scholar

[12]

C. L. Frota and J. A. Goldstein, Some nonlinear wave equations with acoustic boundary conditions,, Journal of Differential Equations, 164 (2000), 92.  doi: 10.1006/jdeq.1999.3743.  Google Scholar

[13]

S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions,, Advances in Differential Equations, 13 (2008), 1051.   Google Scholar

[14]

J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation,, Math. Z., 189 (1985), 487.  doi: 10.1007/BF01168155.  Google Scholar

[15]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{t t} =-Au +F(u)$,, Trans. Amer. Math. Soc., 192 (1974), 1.  doi: 10.2307/1996814.  Google Scholar

[16]

K. Lu and B. Schmalfuss, Invariant manifolds for stochastic wave equations,, J. Differential Equations, 236 (2007), 460.  doi: 10.1016/j.jde.2006.09.024.  Google Scholar

[17]

Y. Lv, W. Wang, Limiting dynamics for stochastic wave equations,, J. Differential Equations, 244 (2008), 1.  doi: 10.1016/j.jde.2007.10.009.  Google Scholar

[18]

C. Mueller, Long time existence for the wave equation with a noise term,, Ann. Probab., 25 (1997), 133.  doi: 10.1214/aop/1024404282.  Google Scholar

[19]

D. Mugnolo, Abstract wave equations with acoustic boundary conditions,, Math. Nachr., 279 (2006), 299.  doi: 10.1002/mana.200310362.  Google Scholar

[20]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,, Israel J. Math., 22 (1975), 273.  doi: 10.1007/BF02761595.  Google Scholar

[21]

L. Popescu and A. Rodriguez-Bernal, On a singularly perturbed wave equation with dynamic boundary conditions,, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 389.  doi: 10.1017/S0308210500003279.  Google Scholar

[22]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness,", Academic Press [Harcourt Brace Jovanovich, (1975).   Google Scholar

[23]

W. A. Strauss, "Nonlinear Wave Equations,", CBMS Regional Conference Series in Math., 73 (1989).   Google Scholar

[24]

C. Sun, H. Gao, J. Duan and B. Schmalfuss, Rare events in the Boussinesq system with fluctuating dynamical boundary conditions,, J. Differential Equations, 248 (2010), 1269.  doi: 10.1016/j.jde.2009.10.003.  Google Scholar

[25]

G. Whitham, "Linear and Nonlinear Waves,", Pure and Applied Mathematics, (1974).   Google Scholar

[26]

W. Wang and J. Duan, Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions,, Commun. Math. Phys., 275 (2007), 163.  doi: 10.1007/s00220-007-0301-8.  Google Scholar

[27]

D. Yang and J. Duan, An impact of stochastic dynamic boundary conditions on the evolution of the Cahn-Hilliard system,, Stoch. Anal. Appl., 25 (2007), 613.  doi: 10.1080/07362990701282963.  Google Scholar

[28]

S. F. Zhou, F. Q. Yin and Z. G. Ouyang, Random attractor for damped nonlinear wave equations with white noise,, SIAM J. Appl. Dyn. Syst., 4 (2005), 883.  doi: 10.1137/050623097.  Google Scholar

[1]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[2]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[3]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[4]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[5]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[6]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[7]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[8]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[9]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[10]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[11]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[12]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[13]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[14]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[15]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[18]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[19]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]