\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Euler-Maruyama approximation for the absorption time of the CEV diffusion

Abstract / Introduction Related Papers Cited by
  • The standard convergence analysis of the simulation schemes for the hitting times of diffusions typically requires non-degeneracy of their coefficients on the boundary, which excludes the possibility of absorption. In this paper we consider the CEV diffusion from the mathematical finance and show how a weakly consistent approximation for the absorption time can be constructed, using the Euler-Maruyama scheme.
    Mathematics Subject Classification: Primary: 60H10, 60H35; Secondary: 60F17, 91G60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. M. Abramov, F. C. Klebaner and R. Sh. Liptser, The Euler-Maruyama approximations for the CEV model, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 1-14.doi: 10.3934/dcdsb.2011.16.1.

    [2]

    R. Avikainen, On irregular functionals of SDEs and the Euler scheme, Finance Stoch., 13 (2009), 381-401.doi: 10.1007/s00780-009-0099-7.

    [3]

    F. Delbaen and H. Shirakawa, A note on option pricing for the constant elasticity of variance model, Asia-Pacific Financial Markets, 9 (2002), 85-99.doi: 10.1023/A:1022269617674.

    [4]

    S. N. Ethier, Limit theorems for absorption times of genetic models, Ann. Probab., 7 (1979), 622-638.

    [5]

    S. N. Ethier and T. G. Kurtz, "Markov Processes. Characterization and Convergence,'' Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986.

    [6]

    M. T. Giraudo and L. Sacerdote, An improved technique for the simulation of first passage times for diffusion processes, Comm. Statist. Simulation Comput., 28 (1999), 1135-1163.doi: 10.1080/03610919908813596.

    [7]

    M. T. Giraudo, L. Sacerdote and C. Zucca, A Monte Carlo method for the simulation of first passage times of diffusion processes, Methodol. Comput. Appl. Probab., 3 (2001), 215-231.doi: 10.1023/A:1012261328124.

    [8]

    E. Gobet, Weak approximation of killed diffusion using Euler schemes, Stochastic Process. Appl., 87 (2000), 167-197.doi: 10.1016/S0304-4149(99)00109-X.

    [9]

    E. Gobet and S. Menozzi, Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme, Stochastic Process. Appl., 112 (2004), 201-223.doi: 10.1016/j.spa.2004.03.002.

    [10]

    K. Helmes, S. Röhl and R. H. Stockbridge, Computing moments of the exit time distribution for Markov processes by linear programming, Oper. Res., 49 (2001), 516-530.doi: 10.1287/opre.49.4.516.11221.

    [11]

    J. Jacod and A. N. Shiryaev, "Limit Theorems for Stochastic Processes,'' Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 288, Springer-Verlag, Berlin, 2003.

    [12]

    K. M. Jansons and G. D. Lythe, Exponential timestepping with boundary test for stochastic differential equations, SIAM J. Sci. Comput., 24 (2003), 1809-1822 (electronic).doi: 10.1137/S1064827501399535.

    [13]

    S. Karlin and H. M. Taylor, "A Second Course in Stochastic Processes,'' Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981.

    [14]

    F. C. Klebaner, "Introduction to Stochastic Calculus with Applications,'' Second edition, Imperial College Press, London, 2005.

    [15]

    P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'' Applications of Mathematics (New York), 23, Springer-Verlag, Berlin, 1992.

    [16]

    R. Korn, E. Korn and G. Kroisandt, "Monte Carlo Methods and Models in Finance and Insurance,'' Chapman & Hall/CRC Financial Mathematics Series, CRC Press, Boca Raton, FL, 2010.

    [17]

    P. Lánský and V. Lánská, First-passage-time problem for simulated stochastic diffusion processes, Comput. Biol. Med., 24 (1994), 91-101.

    [18]

    R. Sh. Liptser and A. N. Shiryayev, "Theory of Martingales,'' Mathematics and its Applications (Soviet Series), 49, Kluwer Academic Publishers Group, Dordrecht, 1989.

    [19]

    G. N. Mil'shteĭn, Solution of the first boundary value problem for equations of parabolic type by means of the integration of stochastic differential equations, Teor. Veroyatnost. i Primenen., 40 (1995), 657-665.

    [20]

    G. N. Mil'shteĭn and M. V. Tret'yakov, The simplest random walks for the Dirichlet problem, Teor. Veroyatnost. i Primenen., 47 (2002), 39-58.

    [21]

    G. N. Mil'shteĭn and M. V. Tret'yakov, Simulation of a space-time bounded diffusion, Ann. Appl. Probab., 9 (1999), 732-779.doi: 10.1214/aoap/1029962812.

    [22]

    G. N. Mil'shteĭn and M. V. Tret'yakov, "Stochastic Numerics for Mathematical Physics,'' Scientific Computation, Springer-Verlag, Berlin, 2004.

    [23]

    L. C. G. Rogers and D. Williams, "Diffusions, Markov processes, and Martingales. Vol. 1. Foundations," Reprint of the second (1994) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000.

    [24]

    L. C. G. Rogers and D. Williams, "Diffusions, Markov processes, and Martingales. Vol. 2. Itô Calculus," Reprint of the second (1994) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000.

    [25]

    A. N. Shiryaev, "Probability,'' Second edition, Graduate Texts in Mathematics, 95, Springer-Verlag, New York, 1996.

    [26]

    L. Yan, The Euler scheme with irregular coefficients, Ann. Probab., 30 (2002), 1172-1194.

    [27]

    H. Zähle, Weak approximation of SDEs by discrete-time processes, J. Appl. Math. Stoch. Anal., 2008, Art. ID 275747, 15 pp.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(80) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return