Citation: |
[1] |
R. A. Adomaitis, I. G. Kevrekidis and R. de la Llave, A computer-assisted study of global dynamic transitions for a noninvertible system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 1305-1321.doi: 10.1142/S021812740701780X. |
[2] |
L. Alsedà and S. Costa, On the definition of strange nonchaotic attractor, Fund. Math., 206 (2009), 23-39. |
[3] |
A. Arneodo, P. H. Coullet and E. A. Spiegel, Cascade of period doublings of tori, Phys. Lett. A, 94 (1983), 1-6.doi: 10.1016/0375-9601(83)90272-4. |
[4] |
K. Bjerklöv, SNA's in the quasi-periodic quadratic family, Comm. Math. Phys., 286 (2009), 137-161.doi: 10.1007/s00220-008-0626-y. |
[5] |
H. W. Broer, G. B. Huitema, F. Takens and B. L. J. Braaksma, Unfoldings and bifurcations of quasi-periodic tori, Mem. Amer. Math. Soc., 83 (1990), viii+175 pp. |
[6] |
H. W. Broer, C. Simó and R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing, Nonlinearity, 15 (2002), 1205-1267.doi: 10.1088/0951-7715/15/4/312. |
[7] |
H. W. Broer, C. Simó and R. Vitolo, The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: The Arnol'd resonance web, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 769-787. |
[8] |
E. Castellà and Á. Jorba, On the vertical families of two-dimensional tori near the triangular points of the bicircular problem, Celestial Mech. Dynam. Astronom., 76 (2000), 35-54.doi: 10.1023/A:1008321605028. |
[9] |
U. Feudel, S. Kuznetsov and A. Pikovsky, "Strange Nonchaotic Attractors. Dynamics Between Order and Chaos in Quasiperiodically Forced Systems," World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 56, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. |
[10] |
J. Figueras and A. Haro, A reliable computation of robust response tori on the verge of breakdown, to appear in SIAM J. Appl. Dyn. Syst., 2012. |
[11] |
V. Franceschini, Bifurcations of tori and phase locking in a dissipative system of differential equations, Physica D, 6 (1983), 285-304.doi: 10.1016/0167-2789(83)90013-1. |
[12] |
A. Haro and C. Simó, To be or not to be a SNA: That is the question, 2005. Available from: http://www.maia.ub.es/dsg/2005/index.html. |
[13] |
J. F. Heagy and S. M. Hammel, The birth of strange nonchaotic attractors, Phys. D, 70 (1994), 140-153.doi: 10.1016/0167-2789(94)90061-2. |
[14] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc., 76 (1970), 1015-1019.doi: 10.1090/S0002-9904-1970-12537-X. |
[15] |
T. H. Jäger, Quasiperiodically forced interval maps with negative Schwarzian derivative, Nonlinearity, 16 (2003), 1239-1255.doi: 10.1088/0951-7715/16/4/303. |
[16] |
Á. Jorba, Numerical computation of the normal behaviour of invariant curves of $n$-dimensional maps, Nonlinearity, 14 (2001), 943-976.doi: 10.1088/0951-7715/14/5/303. |
[17] |
À. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567.doi: 10.3934/dcdsb.2008.10.537. |
[18] |
K. Kaneko, Doubling of torus, Progr. Theoret. Phys., 69 (1983), 1806-1810.doi: 10.1143/PTP.69.1806. |
[19] |
S. Kuznetsov, U. Feudel and A. Pikovsky, Renormalization group of scaling at the torus-doubling terminal point, Phys. Rev. E (3), 57 (1998), 1585-1590.doi: 10.1103/PhysRevE.57.1585. |
[20] |
A. S. Pikovsky and U. Feudel, Characterizing strange nonchaotic attractors, Chaos, 5 (1995), 253-260.doi: 10.1063/1.166074. |
[21] |
A. Prasad, V. Mehra and R. Ramaskrishna, Intermittency route to strange nonchaotic attractors, Phys. Rev. Let., 79 (1995), 4127-4130.doi: 10.1103/PhysRevLett.79.4127. |
[22] |
A. Prasad, V. Mehra and R. Ramaskrishna, Strange nonchaotic attractors in the quasiperiodically forced logistic map, Phys. Rev. E, 57 (1998), 1576-1584.doi: 10.1103/PhysRevE.57.1576. |
[23] |
P. Rabassa, "Contribution to the Study of Perturbations of Low Dimensional Maps," Ph.D thesis, Universitat de Barcelona, 2010. |
[24] |
P. Rabassa, A. Jorba and J. C. Tatjer, Numerical evidences of universality and self-similarity in the forced logistic map, preprint, arXiv:1112.4143, 2011. |
[25] |
P. Rabassa, A. Jorba and J. C. Tatjer, Towards a renormalization theory for quasi-periodically forced one dimensional maps. I. Existence of reducibily loss bifurcations, preprint, arXiv:1112.4684, 2011. |
[26] |
P. Rabassa, A. Jorba and J. C. Tatjer, Towards a renormalization theory for quasi-periodically forced one dimensional maps. II. Asymptotic behavior of reducibility loss bifurcations, preprint, arXiv:1112.4686, 2011. |
[27] |
P. Rabassa, A. Jorba and J. C. Tatjer, Towards a renormalization theory for quasi-periodically forced one dimensional maps. III. Numerical support, preprint, arXiv:1112.4687, 2011. |
[28] |
C. Simó, On the analytical and numerical approximation of invariant manifolds, in "Les Méthodes Modernes de la Mecánique Céleste" (Course given at Goutelas, France, 1989) (eds.vD. Benest and C. Froeschlé), Editions Frontières, Paris, (1990), 285-329. Available from: http://www.maia.ub.es/dsg/2004/index.html. |
[29] |
L. van Veen, The quasi-periodic doubling cascade in the transition to weak turbulence, Phys. D, 210 (2005), 249-261.doi: 10.1016/j.physd.2005.07.020. |