July  2012, 17(5): 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations

1. 

School of Mathematical Sciences, Soochow University, Suzhou 215006, China, China, China

Received  November 2010 Revised  January 2012 Published  March 2012

In this paper, we prove the existence of positive quasi-periodic solutions for the Lotka-Volterra competition systems with quasi-periodic coefficients by KAM technique. The result shows that, in most case, quasi-periodic solutions exist for sufficiently small quasi-periodic perturbations of the autonomous Lotka-Volterra systems. Moreover, these quasi-periodic solutions will tend to an equilibrium of the autonomous Lotka-Volterra systems.
Citation: Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537
References:
[1]

S. Ahmad, On the nonautonomous Lotka-Volterra competition equations,, Proc. Amer. Math. Soc., 117 (1993), 199.  doi: 10.1090/S0002-9939-1993-1143013-3.  Google Scholar

[2]

C. Alvarez and A. Lazer, An application of topological degree to the periodic competing species problem,, J. Austral. Math. Soc. Ser. B, 28 (1986), 202.  doi: 10.1017/S0334270000005300.  Google Scholar

[3]

Z. Amine and R. Ortega, A periodic prey-predator system,, J. Math. Anal. Appl., 185 (1994), 477.  doi: 10.1006/jmaa.1994.1262.  Google Scholar

[4]

I. Bomze, Lotka-Volterra equation and replicator dynamics: A two-dimensional classification,, Biol. Cybern., 48 (1983), 201.  doi: 10.1007/BF00318088.  Google Scholar

[5]

H. Z. Cong, L. F. Mi and X. P. Yuan, Positive quasi-periodic solutions to Lotka-Volterra system,, Sci. China Math., 53 (2010), 1151.  doi: 10.1007/s11425-009-0217-1.  Google Scholar

[6]

M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems,, Indiana Univ. Math. J., 54 (2005), 779.  doi: 10.1512/iumj.2005.54.2506.  Google Scholar

[7]

J. Cushing, Periodic time-dependent predator-prey systems,, SIAM J. Appl. Math., 32 (1977), 82.  doi: 10.1137/0132006.  Google Scholar

[8]

T. Ding, H. Huang and F. Zanolin, A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations,, Discrete Continuous Dynam. Systems, 1 (1995), 103.   Google Scholar

[9]

T. Ding and F. Zanolin, Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type,, in, (1996), 395.   Google Scholar

[10]

P. van den Driessche and M. Zeeman, Three-dimensional competitive Lotka-Volterra systems with no periodic orbits,, SIAM J. Appl. Math., 58 (1998), 227.  doi: 10.1137/S0036139995294767.  Google Scholar

[11]

H. Freedman and J. Wu, Periodic solutions of single-species models with periodic delay,, SIAM J. Math. Anal., 23 (1992), 689.  doi: 10.1137/0523035.  Google Scholar

[12]

M. Gyllenberg, P. Yan and Y. Wang, Limit cycles for competitor-competitor-mutualist Lotka-Volterra systems,, Physica D, 221 (2006), 135.   Google Scholar

[13]

J. Jiang, J. Mierczyński and Y. Wang, Smoothness of the carrying simplex for discrete-time competitive dynamical systems: A characterization of neat embedding,, J. Differential Equations, 246 (2009), 1623.  doi: 10.1016/j.jde.2008.10.008.  Google Scholar

[14]

A. R. Hausrath and R. F. Manásevich, Periodic solutions of a periodically perturbed Lotka-Volterra equation using the Poincaré-Birkhoff theorem,, J. Math. Anal. Appl., 157 (1991), 1.  doi: 10.1016/0022-247X(91)90132-J.  Google Scholar

[15]

P. Lancaster, "Theory of Matrices," Academic Press,, New York-London, (1969).   Google Scholar

[16]

P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach,, J. Mathe. Biol., 11 (1981), 319.  doi: 10.1007/BF00276900.  Google Scholar

[17]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response,, SIAM J. Appl. Math., 61 (2000), 1445.   Google Scholar

[18]

H. Smith, Periodic solutions of periodic competitive and cooperative systems,, SIAM J. Math. Anal., 17 (1986), 1289.  doi: 10.1137/0517091.  Google Scholar

[19]

X. Tang, D. Cao and X. Zou, Global attractivity of positive periodic solution to periodic Lotka-Volterra competition systems with pure delay,, J. Differential Equations, 228 (2006), 580.  doi: 10.1016/j.jde.2006.06.007.  Google Scholar

[20]

X. Tang and X. Zou, On positive periodic solutions of Lotka-Volterra competition systems with deviating arguments,, Proc. Amer. Math. Soc., 134 (2006), 2967.  doi: 10.1090/S0002-9939-06-08320-1.  Google Scholar

[21]

X. Tang and X. Zou, 3/2-type criteria for global attractivity of Lotka-Volterra competition system without instantaneous negative feedbacks,, J. Differential Equations, 186 (2002), 420.  doi: 10.1016/S0022-0396(02)00011-6.  Google Scholar

[22]

Y. Xia and M. Han, New conditions on the existence and stability of periodic solution in Lotka-Volterra's population system,, SIAM J. Appl. Math., 69 (2009), 1580.  doi: 10.1137/070702485.  Google Scholar

[23]

D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system,, J. Math. Biol., 43 (2001), 268.  doi: 10.1007/s002850100097.  Google Scholar

[24]

D. Xiao and S. Ruan, Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response,, J. Differential Equations, 176 (2001), 494.  doi: 10.1006/jdeq.2000.3982.  Google Scholar

[25]

J. You, Perturbations of lower dimensional tori for Hamiltonian systems,, J. Differential Equations, 152 (1999), 1.  doi: 10.1006/jdeq.1998.3515.  Google Scholar

[26]

X. Yuan, Construction of quasi-periodic breathers via KAM technique,, Comm. Math. Phys., 226 (2002), 61.  doi: 10.1007/s002200100593.  Google Scholar

[27]

X. Yuan and A. Nunes, A note on the reducibility of linear differential equations with quasiperiodic coefficients,, Int. J. Math. Sci., 2003 (): 4071.   Google Scholar

show all references

References:
[1]

S. Ahmad, On the nonautonomous Lotka-Volterra competition equations,, Proc. Amer. Math. Soc., 117 (1993), 199.  doi: 10.1090/S0002-9939-1993-1143013-3.  Google Scholar

[2]

C. Alvarez and A. Lazer, An application of topological degree to the periodic competing species problem,, J. Austral. Math. Soc. Ser. B, 28 (1986), 202.  doi: 10.1017/S0334270000005300.  Google Scholar

[3]

Z. Amine and R. Ortega, A periodic prey-predator system,, J. Math. Anal. Appl., 185 (1994), 477.  doi: 10.1006/jmaa.1994.1262.  Google Scholar

[4]

I. Bomze, Lotka-Volterra equation and replicator dynamics: A two-dimensional classification,, Biol. Cybern., 48 (1983), 201.  doi: 10.1007/BF00318088.  Google Scholar

[5]

H. Z. Cong, L. F. Mi and X. P. Yuan, Positive quasi-periodic solutions to Lotka-Volterra system,, Sci. China Math., 53 (2010), 1151.  doi: 10.1007/s11425-009-0217-1.  Google Scholar

[6]

M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems,, Indiana Univ. Math. J., 54 (2005), 779.  doi: 10.1512/iumj.2005.54.2506.  Google Scholar

[7]

J. Cushing, Periodic time-dependent predator-prey systems,, SIAM J. Appl. Math., 32 (1977), 82.  doi: 10.1137/0132006.  Google Scholar

[8]

T. Ding, H. Huang and F. Zanolin, A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations,, Discrete Continuous Dynam. Systems, 1 (1995), 103.   Google Scholar

[9]

T. Ding and F. Zanolin, Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type,, in, (1996), 395.   Google Scholar

[10]

P. van den Driessche and M. Zeeman, Three-dimensional competitive Lotka-Volterra systems with no periodic orbits,, SIAM J. Appl. Math., 58 (1998), 227.  doi: 10.1137/S0036139995294767.  Google Scholar

[11]

H. Freedman and J. Wu, Periodic solutions of single-species models with periodic delay,, SIAM J. Math. Anal., 23 (1992), 689.  doi: 10.1137/0523035.  Google Scholar

[12]

M. Gyllenberg, P. Yan and Y. Wang, Limit cycles for competitor-competitor-mutualist Lotka-Volterra systems,, Physica D, 221 (2006), 135.   Google Scholar

[13]

J. Jiang, J. Mierczyński and Y. Wang, Smoothness of the carrying simplex for discrete-time competitive dynamical systems: A characterization of neat embedding,, J. Differential Equations, 246 (2009), 1623.  doi: 10.1016/j.jde.2008.10.008.  Google Scholar

[14]

A. R. Hausrath and R. F. Manásevich, Periodic solutions of a periodically perturbed Lotka-Volterra equation using the Poincaré-Birkhoff theorem,, J. Math. Anal. Appl., 157 (1991), 1.  doi: 10.1016/0022-247X(91)90132-J.  Google Scholar

[15]

P. Lancaster, "Theory of Matrices," Academic Press,, New York-London, (1969).   Google Scholar

[16]

P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach,, J. Mathe. Biol., 11 (1981), 319.  doi: 10.1007/BF00276900.  Google Scholar

[17]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response,, SIAM J. Appl. Math., 61 (2000), 1445.   Google Scholar

[18]

H. Smith, Periodic solutions of periodic competitive and cooperative systems,, SIAM J. Math. Anal., 17 (1986), 1289.  doi: 10.1137/0517091.  Google Scholar

[19]

X. Tang, D. Cao and X. Zou, Global attractivity of positive periodic solution to periodic Lotka-Volterra competition systems with pure delay,, J. Differential Equations, 228 (2006), 580.  doi: 10.1016/j.jde.2006.06.007.  Google Scholar

[20]

X. Tang and X. Zou, On positive periodic solutions of Lotka-Volterra competition systems with deviating arguments,, Proc. Amer. Math. Soc., 134 (2006), 2967.  doi: 10.1090/S0002-9939-06-08320-1.  Google Scholar

[21]

X. Tang and X. Zou, 3/2-type criteria for global attractivity of Lotka-Volterra competition system without instantaneous negative feedbacks,, J. Differential Equations, 186 (2002), 420.  doi: 10.1016/S0022-0396(02)00011-6.  Google Scholar

[22]

Y. Xia and M. Han, New conditions on the existence and stability of periodic solution in Lotka-Volterra's population system,, SIAM J. Appl. Math., 69 (2009), 1580.  doi: 10.1137/070702485.  Google Scholar

[23]

D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system,, J. Math. Biol., 43 (2001), 268.  doi: 10.1007/s002850100097.  Google Scholar

[24]

D. Xiao and S. Ruan, Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response,, J. Differential Equations, 176 (2001), 494.  doi: 10.1006/jdeq.2000.3982.  Google Scholar

[25]

J. You, Perturbations of lower dimensional tori for Hamiltonian systems,, J. Differential Equations, 152 (1999), 1.  doi: 10.1006/jdeq.1998.3515.  Google Scholar

[26]

X. Yuan, Construction of quasi-periodic breathers via KAM technique,, Comm. Math. Phys., 226 (2002), 61.  doi: 10.1007/s002200100593.  Google Scholar

[27]

X. Yuan and A. Nunes, A note on the reducibility of linear differential equations with quasiperiodic coefficients,, Int. J. Math. Sci., 2003 (): 4071.   Google Scholar

[1]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[2]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[6]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[7]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[10]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[11]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[12]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[13]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[14]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[16]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[17]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[18]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]