-
Previous Article
Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows
- DCDS-B Home
- This Issue
-
Next Article
Period doubling and reducibility in the quasi-periodically forced logistic map
Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations
1. | School of Mathematical Sciences, Soochow University, Suzhou 215006, China, China, China |
References:
[1] |
S. Ahmad, On the nonautonomous Lotka-Volterra competition equations, Proc. Amer. Math. Soc., 117 (1993), 199-204.
doi: 10.1090/S0002-9939-1993-1143013-3. |
[2] |
C. Alvarez and A. Lazer, An application of topological degree to the periodic competing species problem, J. Austral. Math. Soc. Ser. B, 28 (1986), 202-219.
doi: 10.1017/S0334270000005300. |
[3] |
Z. Amine and R. Ortega, A periodic prey-predator system, J. Math. Anal. Appl., 185 (1994), 477-489.
doi: 10.1006/jmaa.1994.1262. |
[4] |
I. Bomze, Lotka-Volterra equation and replicator dynamics: A two-dimensional classification, Biol. Cybern., 48 (1983), 201-211.
doi: 10.1007/BF00318088. |
[5] |
H. Z. Cong, L. F. Mi and X. P. Yuan, Positive quasi-periodic solutions to Lotka-Volterra system, Sci. China Math., 53 (2010), 1151-1160.
doi: 10.1007/s11425-009-0217-1. |
[6] |
M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J., 54 (2005), 779-815.
doi: 10.1512/iumj.2005.54.2506. |
[7] |
J. Cushing, Periodic time-dependent predator-prey systems, SIAM J. Appl. Math., 32 (1977), 82-95.
doi: 10.1137/0132006. |
[8] |
T. Ding, H. Huang and F. Zanolin, A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations, Discrete Continuous Dynam. Systems, 1 (1995), 103-117. |
[9] |
T. Ding and F. Zanolin, Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type, in "World Congress of Nonlinear Analysts '92, Vo. I-IV" (ed. V. Lakshmikantham) (Tampa, FL, 1992), de Gruyter, Berlin, (1996), 395-406. |
[10] |
P. van den Driessche and M. Zeeman, Three-dimensional competitive Lotka-Volterra systems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227-234.
doi: 10.1137/S0036139995294767. |
[11] |
H. Freedman and J. Wu, Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal., 23 (1992), 689-701.
doi: 10.1137/0523035. |
[12] |
M. Gyllenberg, P. Yan and Y. Wang, Limit cycles for competitor-competitor-mutualist Lotka-Volterra systems, Physica D, 221 (2006), 135-145. |
[13] |
J. Jiang, J. Mierczyński and Y. Wang, Smoothness of the carrying simplex for discrete-time competitive dynamical systems: A characterization of neat embedding, J. Differential Equations, 246 (2009), 1623-1672.
doi: 10.1016/j.jde.2008.10.008. |
[14] |
A. R. Hausrath and R. F. Manásevich, Periodic solutions of a periodically perturbed Lotka-Volterra equation using the Poincaré-Birkhoff theorem, J. Math. Anal. Appl., 157 (1991), 1-9.
doi: 10.1016/0022-247X(91)90132-J. |
[15] |
P. Lancaster, "Theory of Matrices," Academic Press, New York-London, 1969. |
[16] |
P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach, J. Mathe. Biol., 11 (1981), 319-335.
doi: 10.1007/BF00276900. |
[17] |
S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2000), 1445-1472. |
[18] |
H. Smith, Periodic solutions of periodic competitive and cooperative systems, SIAM J. Math. Anal., 17 (1986), 1289-1318.
doi: 10.1137/0517091. |
[19] |
X. Tang, D. Cao and X. Zou, Global attractivity of positive periodic solution to periodic Lotka-Volterra competition systems with pure delay, J. Differential Equations, 228 (2006), 580-610.
doi: 10.1016/j.jde.2006.06.007. |
[20] |
X. Tang and X. Zou, On positive periodic solutions of Lotka-Volterra competition systems with deviating arguments, Proc. Amer. Math. Soc., 134 (2006), 2967-2974.
doi: 10.1090/S0002-9939-06-08320-1. |
[21] |
X. Tang and X. Zou, 3/2-type criteria for global attractivity of Lotka-Volterra competition system without instantaneous negative feedbacks, J. Differential Equations, 186 (2002), 420-439.
doi: 10.1016/S0022-0396(02)00011-6. |
[22] |
Y. Xia and M. Han, New conditions on the existence and stability of periodic solution in Lotka-Volterra's population system, SIAM J. Appl. Math., 69 (2009), 1580-1597.
doi: 10.1137/070702485. |
[23] |
D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43 (2001), 268-290.
doi: 10.1007/s002850100097. |
[24] |
D. Xiao and S. Ruan, Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response, J. Differential Equations, 176 (2001), 494-510.
doi: 10.1006/jdeq.2000.3982. |
[25] |
J. You, Perturbations of lower dimensional tori for Hamiltonian systems, J. Differential Equations, 152 (1999), 1-29.
doi: 10.1006/jdeq.1998.3515. |
[26] |
X. Yuan, Construction of quasi-periodic breathers via KAM technique, Comm. Math. Phys., 226 (2002), 61-100.
doi: 10.1007/s002200100593. |
[27] |
X. Yuan and A. Nunes, A note on the reducibility of linear differential equations with quasiperiodic coefficients,, Int. J. Math. Sci., 2003 (): 4071.
|
show all references
References:
[1] |
S. Ahmad, On the nonautonomous Lotka-Volterra competition equations, Proc. Amer. Math. Soc., 117 (1993), 199-204.
doi: 10.1090/S0002-9939-1993-1143013-3. |
[2] |
C. Alvarez and A. Lazer, An application of topological degree to the periodic competing species problem, J. Austral. Math. Soc. Ser. B, 28 (1986), 202-219.
doi: 10.1017/S0334270000005300. |
[3] |
Z. Amine and R. Ortega, A periodic prey-predator system, J. Math. Anal. Appl., 185 (1994), 477-489.
doi: 10.1006/jmaa.1994.1262. |
[4] |
I. Bomze, Lotka-Volterra equation and replicator dynamics: A two-dimensional classification, Biol. Cybern., 48 (1983), 201-211.
doi: 10.1007/BF00318088. |
[5] |
H. Z. Cong, L. F. Mi and X. P. Yuan, Positive quasi-periodic solutions to Lotka-Volterra system, Sci. China Math., 53 (2010), 1151-1160.
doi: 10.1007/s11425-009-0217-1. |
[6] |
M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J., 54 (2005), 779-815.
doi: 10.1512/iumj.2005.54.2506. |
[7] |
J. Cushing, Periodic time-dependent predator-prey systems, SIAM J. Appl. Math., 32 (1977), 82-95.
doi: 10.1137/0132006. |
[8] |
T. Ding, H. Huang and F. Zanolin, A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations, Discrete Continuous Dynam. Systems, 1 (1995), 103-117. |
[9] |
T. Ding and F. Zanolin, Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type, in "World Congress of Nonlinear Analysts '92, Vo. I-IV" (ed. V. Lakshmikantham) (Tampa, FL, 1992), de Gruyter, Berlin, (1996), 395-406. |
[10] |
P. van den Driessche and M. Zeeman, Three-dimensional competitive Lotka-Volterra systems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227-234.
doi: 10.1137/S0036139995294767. |
[11] |
H. Freedman and J. Wu, Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal., 23 (1992), 689-701.
doi: 10.1137/0523035. |
[12] |
M. Gyllenberg, P. Yan and Y. Wang, Limit cycles for competitor-competitor-mutualist Lotka-Volterra systems, Physica D, 221 (2006), 135-145. |
[13] |
J. Jiang, J. Mierczyński and Y. Wang, Smoothness of the carrying simplex for discrete-time competitive dynamical systems: A characterization of neat embedding, J. Differential Equations, 246 (2009), 1623-1672.
doi: 10.1016/j.jde.2008.10.008. |
[14] |
A. R. Hausrath and R. F. Manásevich, Periodic solutions of a periodically perturbed Lotka-Volterra equation using the Poincaré-Birkhoff theorem, J. Math. Anal. Appl., 157 (1991), 1-9.
doi: 10.1016/0022-247X(91)90132-J. |
[15] |
P. Lancaster, "Theory of Matrices," Academic Press, New York-London, 1969. |
[16] |
P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach, J. Mathe. Biol., 11 (1981), 319-335.
doi: 10.1007/BF00276900. |
[17] |
S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2000), 1445-1472. |
[18] |
H. Smith, Periodic solutions of periodic competitive and cooperative systems, SIAM J. Math. Anal., 17 (1986), 1289-1318.
doi: 10.1137/0517091. |
[19] |
X. Tang, D. Cao and X. Zou, Global attractivity of positive periodic solution to periodic Lotka-Volterra competition systems with pure delay, J. Differential Equations, 228 (2006), 580-610.
doi: 10.1016/j.jde.2006.06.007. |
[20] |
X. Tang and X. Zou, On positive periodic solutions of Lotka-Volterra competition systems with deviating arguments, Proc. Amer. Math. Soc., 134 (2006), 2967-2974.
doi: 10.1090/S0002-9939-06-08320-1. |
[21] |
X. Tang and X. Zou, 3/2-type criteria for global attractivity of Lotka-Volterra competition system without instantaneous negative feedbacks, J. Differential Equations, 186 (2002), 420-439.
doi: 10.1016/S0022-0396(02)00011-6. |
[22] |
Y. Xia and M. Han, New conditions on the existence and stability of periodic solution in Lotka-Volterra's population system, SIAM J. Appl. Math., 69 (2009), 1580-1597.
doi: 10.1137/070702485. |
[23] |
D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43 (2001), 268-290.
doi: 10.1007/s002850100097. |
[24] |
D. Xiao and S. Ruan, Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response, J. Differential Equations, 176 (2001), 494-510.
doi: 10.1006/jdeq.2000.3982. |
[25] |
J. You, Perturbations of lower dimensional tori for Hamiltonian systems, J. Differential Equations, 152 (1999), 1-29.
doi: 10.1006/jdeq.1998.3515. |
[26] |
X. Yuan, Construction of quasi-periodic breathers via KAM technique, Comm. Math. Phys., 226 (2002), 61-100.
doi: 10.1007/s002200100593. |
[27] |
X. Yuan and A. Nunes, A note on the reducibility of linear differential equations with quasiperiodic coefficients,, Int. J. Math. Sci., 2003 (): 4071.
|
[1] |
Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061 |
[2] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[3] |
Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195 |
[4] |
Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953 |
[5] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[6] |
Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083 |
[7] |
Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239 |
[8] |
Qi Wang. Some global dynamics of a Lotka-Volterra competition-diffusion-advection system. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3245-3255. doi: 10.3934/cpaa.2020142 |
[9] |
De Tang. Dynamical behavior for a Lotka-Volterra weak competition system in advective homogeneous environment. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4913-4928. doi: 10.3934/dcdsb.2019037 |
[10] |
Qian Guo, Xiaoqing He, Wei-Ming Ni. Global dynamics of a general Lotka-Volterra competition-diffusion system in heterogeneous environments. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6547-6573. doi: 10.3934/dcds.2020290 |
[11] |
Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300 |
[12] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6185-6205. doi: 10.3934/dcdsb.2021013 |
[13] |
Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650 |
[14] |
Bang-Sheng Han, Zhi-Cheng Wang, Zengji Du. Traveling waves for nonlocal Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1959-1983. doi: 10.3934/dcdsb.2020011 |
[15] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2161-2172. doi: 10.3934/dcdsb.2021014 |
[16] |
Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147 |
[17] |
Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043 |
[18] |
Wentao Meng, Yuanxi Yue, Manjun Ma. The minimal wave speed of the Lotka-Volterra competition model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021265 |
[19] |
Wenhua Qiu, Jianguo Si. On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point. Communications on Pure and Applied Analysis, 2015, 14 (2) : 421-437. doi: 10.3934/cpaa.2015.14.421 |
[20] |
Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]