Citation: |
[1] |
Y. Agranovich and P. Sobolevskii, Motion of non-linear viscoelastic fluid, Nonlinear Anal., 32 (1998), 755-760.doi: 10.1016/S0362-546X(97)00519-1. |
[2] |
M. Akhmatov and A. Oskolkov, On convergence difference schemes for the equations of motion of an Oldroyd fluid, LOMI, 159 (1987), 143-152; translation in J. Soviet. Math., 47 (1989), 2926-2933.doi: 10.1007/BF01305224. |
[3] |
W. Allegretto, Y. Lin and A. Zhou, Long-time stability of finite element approximations for parabolic equations with memory, Numer. Methods Partial Differential Eq., 15 (1999), 333-354. |
[4] |
G. Araújo, S. de Menezes and A. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids, Electron J. Differential Equations, 2009, 16 pp. |
[5] |
R. Bird, R. Armstrong and O. Hassager, "Dynamics of Polymeric Liquids. Vol. 1. Fluid Mechanics," John Wiley & sons, New York, 1977. |
[6] |
J. Cannon, R. Ewing, Y. He and Y. Lin, A modified nonlinear Galerkin method for the viscoelastic fluid motion equations, Int. J. Eng. Sci., 37 (1999), 1643-1662.doi: 10.1016/S0020-7225(98)00142-6. |
[7] |
P. Ciarlet, "The Finite Element Method for Elliptic Problems," Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. |
[8] |
V. Girault and P.-A. Raviart, "Finite Element Approximation of the Navier-Stokes Equations. Theory and Algorithms," Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1979. |
[9] |
D. Goswami and A. Pani, A priori error estimates for semidiscrete finite element approximations to equations of motion arising in Oldroyd fluids of order one, Int. J. Numer. Anal. Model., 8 (2011), 324-352. |
[10] |
Y. He and J. Li, Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198 (2009), 1351-1359. |
[11] |
Y. He and J. Li, Two-level methods based on three corrections for the 2D/3D steady Navier-Stokes equations, Int. J. Numer. Anal. Model. Ser. B, 2 (2011), 42-56. |
[12] |
Y. He and Y. Li, Asymptotic behavior of linearized viscoelastic flow problem, Discrete Contin. Dyn. Syst.-Ser. B, 10 (2008), 843-856. |
[13] |
Y. He and K. Li, Asymptotic behavior and time discretization analysis for the non-stationary Navier-Stokes problem, Numer. Math., 98 (2004), 647-673.doi: 10.1007/s00211-004-0532-y. |
[14] |
Y. He, Y. Lin, S. Shen and R. Tait, On the convergence of viscoelastic fluid flows to a steady state, Adv. Differential Equations, 7 (2002), 717-742. |
[15] |
Y. He, Y. Lin, S. Shen, W. Sun and R. Tait, Finite element approximation for the viscoelastic fluid motion problem, J. Comput. Appl. Math., 155 (2003), 201-222.doi: 10.1016/S0377-0427(02)00864-6. |
[16] |
Y. He and W. Sun, Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 45 (2007), 837-869.doi: 10.1137/050639910. |
[17] |
J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem part IV: error analysis for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), 353-384.doi: 10.1137/0727022. |
[18] |
D. Joseph, "Fluid Dynamics of Viscoelastic Liquids," Springer-Verlag, New York, 1990. |
[19] |
A. Kotsiolis and A. Oskolkov, Initial boundary-value problems for equations of slightly compressible Jeffreys-Oldroyd fluids, Zap. Nauchn. Semin. POMI 208 (1993) 200-218, J. Math. Sci., 81 (1996), 2578-2588.doi: 10.1007/BF02362429. |
[20] |
N. Ju, On the global stability of a temporal discretization scheme for the Navier-Stokes equations, IMA J. Numer. Anal., 22 (2002), 577-597.doi: 10.1093/imanum/22.4.577. |
[21] |
J. Li, J. Wu, Z. Chen and A. Wang, Superconvergence of stabilized low order finite volume approximation for the three-dimensional stationary Navier-Stokes equations, Int. J. Numer. Anal. Model., 9 (2012), 419-431. |
[22] |
Y. Li and K. Li, Operator splitting methods for the Navier-Stokes equations with nonlinear slip boundary conditions, Int. J. Numer. Anal. Model., 7 (2010), 785-805. |
[23] |
J. Oldroyd, On the formulation of the rheological equations of state, Proc. Roy. Soc. Lond. Math. Phys. Sci., 200 (1950), 523-541.doi: 10.1098/rspa.1950.0035. |
[24] |
A. Oskolkov, Initial boundary value problems for the equations of motion of Kelvin-Voigt fluids and Oldroyd fluids, Contributions to "Boundary Value Problems of Mathematical Physics"(ed. J. Schulenberger), Proc. Steklov Inst. Math., 2 (1989), 137-182. |
[25] |
A. Oskolkov, The penalty method for equations of viscoelastic media, Zap. Nauchn. Semin. POMI 224 (1995) 267-278, J. Math. Sci., 88 (1998), 283-291.doi: 10.1007/BF02364990. |
[26] |
A. Pani and J. Yuan, Semidiscrete finite element Galerkin approximation to the equations of motion arising in the Oldroyd model, IMA J. Numer. Anal., 25 (2005), 750-782.doi: 10.1093/imanum/dri016. |
[27] |
A. Pani, J. Yuan and P. Damazio, On a linearized backward Euler method for the equations of motion of Oldroyd fluids of order one, SIAM J. Numer. Anal., 44 (2006), 804-825.doi: 10.1137/S0036142903428967. |
[28] |
L. Shen, J. Li and Z. Chen, Analysis of a stabilized finite volume method for the transient Stokes equations, Int. J. Numer. Anal. Model., 6 (2009), 505-519. |
[29] |
J. Shen, Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal., 38 (1990), 201-229.doi: 10.1080/00036819008839963. |
[30] |
P. Sobolevskii, Stabilization of viscoelastic fluid motion (Oldroyd's mathematical model), Differential Integral Equations, 7 (1994), 1597-1612. |
[31] |
P. Sobolevskii, Asymptotic of stable viscoelastic fluid motion (Oldroyd's mathematical model), Math. Nachr., 177 (1996), 281-305.doi: 10.1002/mana.19961770116. |
[32] |
H. Sun, Y. He and X. Feng, On error estimates of the pressure-correction projection methods for the time-dependent Navier-Stokes equations, Int. J. Numer. Anal. Model., 8 (2011), 70-85. |
[33] |
R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis," North-Holland, Amsterdam, 1984. |
[34] |
R. Temam and X. Wang, Boundary layers asscociated with incompressible Navier-Stokes equations: the noncharacteristic boundary case, J. Differential Equations, 179 (2002), 647-686.doi: 10.1006/jdeq.2001.4038. |
[35] |
F. Tone and D. Wirosoetisno, On the long-time staility of the implicit Euler scheme for the two-dimensional Navier-Stokes equations, SIAM J. Numer. Anal., 44 (2006), 29-40.doi: 10.1137/040618527. |
[36] |
K. Wang, Y. He and X. Feng, On error estimates of the penalty method for the viscoelastic flow problem I: time discretization, Appl. Math. Modell., 34 (2010), 4089-4105.doi: 10.1016/j.apm.2010.04.008. |
[37] |
K. Wang, Y. He and X. Feng, On error estimates of the fully discrete penalty method for the viscoelastic flow problem, Internat. J. Comput. Math., 88 (2011), 2199-2220.doi: 10.1080/00207160.2010.534781. |
[38] |
K. Wang, Y. He and Y. Shang, Fully discrete finite element method for the viscoelastic fluid motion equations, Discrete Contin. Dyn. Syst.-Ser. B, 13 (2010), 665-684. |
[39] |
K. Wang, Y. Lin and Y. He, Asymptotic analysis of the equations of motion for viscoelastic Oldroyd fluid, Discete Contin. Dyn. Syst., 32 (2012), 657-677. |
[40] |
K. Wang, Z. Si and Y. Yang, Stabilized finite element method for the viscoelastic Oldroyd fluid flows, Numer. Algor., (2011).doi: 10.1007/s11075-011-9512-3. |