Citation: |
[1] |
B. Ainseba and S. Aniţa, Internal stabilizability for a reaction-diffusion problem modeling a predator-prey system, Nonlinear Anal., 61 (2005), 491-501.doi: 10.1016/j.na.2004.09.055. |
[2] |
L.-I. Aniţa and S. Aniţa, Note on the stabilization of a reaction-diffusion model in epidemiology, Nonlinear Anal. Real World Appl., 6 (2005), 537-544. |
[3] |
S. Aniţa and V. Capasso, A stabilizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic systems, Nonlinear Anal. Real World Appl., 3 (2002), 453-464. |
[4] |
S. Aniţa and V. Capasso, A stabilization strategy for a reaction-diffusion system modelling a class of spatially structured epidemic systems (think globally, act locally), Nonlinear Anal. Real World Appl., 10 (2009), 2026-2035.doi: 10.1016/j.nonrwa.2008.03.009. |
[5] |
S. Aniţa and V. Capasso, Stabilization for a reaction-diffusion system modelling a class of spatially structured epidemic systems. The periodic case, in "Advances in Dynamics and Control: Theory, Methods, and Applications'' (eds. S. Sivasundaram, et al.), Cambridge Scientific Publishers Ltd., Cambridge, MA, 2011. |
[6] |
S. Aniţa and V. Capasso, On the stabilization of reaction-diffusion systems modeling a class of man-environment epidemics: A review, Math. Meth. Appl. Sci., 33 (2010), 1235-1244.doi: 10.1002/mma.1267. |
[7] |
S. Aniţa, W. E. Fitzgibbon and M. Langlais, Global existence and internal stabilization for a class of reaction-diffusion systems posed on non coincident spatial domains, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 805-822.doi: 10.3934/dcdsb.2009.11.805. |
[8] |
J. L. Aron and R. M. May, The population dynamics of malaria, in "Population Dynamics of Infectious Diseases. Theory and Applications'' (ed. R. M. Anderson), Chapman & Hall, London, (1982), 139-179. |
[9] |
N. Bacaër and C. Sokhna, A reaction-diffusion system modeling the spread of resistance to an antimalarial drug, Math. Biosci. Eng., 2 (2005), 227-238. |
[10] |
V. Capasso, Asymptotic stability for an integro-differential reaction-diffusion system, J. Math. Anal. Appl., 103 (1984), 575-588.doi: 10.1016/0022-247X(84)90147-1. |
[11] |
V. Capasso, "Mathematical Structures of Epidemic Systems,'' With a foreword by Simon A. Levin, Corrected reprint of the 1993 original, Lecture Notes Biomath., Vol. 97, Springer-Verlag, Berlin, 2008. |
[12] |
V. Capasso and L. Maddalena, Periodic solutions for a reaction-diffusion system modelling the spread of a class of epidemics, SIAM J. Appl. Math., 43 (1983), 417-427.doi: 10.1137/0143027. |
[13] |
F. Chamchod and N. F. Britton, Analysis of a vector-bias model on malaria transmission, Bull. Math. Biol., 73 (2011), 639-657.doi: 10.1007/s11538-010-9545-0. |
[14] |
N. Chitnis, J. M. Cushing and J. M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM Journal on Applied Mathematics, 67 (2006), 24-45.doi: 10.1137/050638941. |
[15] |
N. Chitnis, T. A. Smith and R. W. Steketee, A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population, J. Biol. Dyn., 2 (2008), 259-285. |
[16] |
K. Deimling, "Nonlinear Functional Analysis,'' Springer-Verlag, Berlin, 1985. |
[17] |
K. Dietz, Mathematical models for transmission and control of malaria, in "Principles and Practice of Malariology'' (eds. W. Wernsdorfer and Y. McGregor), Churchill Livingstone, Edinburgh, (1988), 1091-1133. |
[18] |
K. Dietz, T. Molineaux and A. Thomas, A malaria model tested in the African savannah, Bull. World Health Org., 50 (1974), 347-357. |
[19] |
A. Friedman, "Partial Differential Equations of Parabolic Type,'' Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. |
[20] |
G. F. Killeen, F. F. McKenzie, B. D. Foy, C. Schieffelin, P. F. Billingsley and J. C. Beier, A simplified model for predicting malaria entomological inoculation rates based on entomologic and parasitologic parameters relevant to control, Am. J. Trop. Med. Hyg., 62 (2000), 535-544. |
[21] |
J.-L. Lions, "Contrôlabilité Exacte, Perturbation et Stabilisation de Systèmes Distribués,'' Tome 1, (French) [Exact Controllability, Perturbations and Stabilization of Distributed Systems, Vol. 1], Contrôlabilité Exacte [Exact Controllability], Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 8, Masson, Paris, 1988. |
[22] |
G. Macdonald, "The Epidemiology and Control of Malaria,'' Oxford University Press, London, 1957. |
[23] |
L. Molineaux and G. Gramiccia, "The Garki Project. Research on the Epidemiology and Control of Malaria in the Sudan Savanna of West Africa,'' World Health Organization, Geneva, 1980. |
[24] |
M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,'' Corrected reprint of the 1967 original, Springer-Verlag, New York, 1984. |
[25] |
R. Ross, "The Prevention of Malaria,'' 2nd edition, Murray, London, 1911. |
[26] |
S. Ruan, D. Xiaob and J. C. Beierc, On the delayed Ross-Macdonald model for malaria transmission, Bull. Math. Biol., 70 (2008), 1098-1114.doi: 10.1007/s11538-007-9292-z. |
[27] |
T. Smith, G. Killeen, N. Maire, A. Ross, L. Molineaux, F. Tediosi, G. Hutton, J. Utzinger, K. Dietz and M. Tanner, Mathematical modeling of the impact of malaria vaccines on the clinical epidemiology and natural history of Plasmodium Falciparum malaria: Overview, Am. J. Trop. Med. Hyg., 75 (2006), 1-10. |
[28] |
T. Sochantha, S. Hewitt, C. Nguon, L. Okell, N. Alexander, S. Yeung, H. Vannara, M. Rowland and D. Socheat, Insecticide-treated bednets for the prevention of Plasmodium falciparum malaria in Cambodia: A cluster-randomized trial, Trop. Med. Int. Health, 11 (2006), 1166-1177.doi: 10.1111/j.1365-3156.2006.01673.x. |
[29] |
J. Smoller, "Shock Waves and Reaction-Diffusion Equations," 2nd edition, Springer-Verlag, New York, 1994. |
[30] |
L. J. White, R. J. Maude, W. Pongtavornpinyo, S. Saralamba, R. Aguas, T. Van Effelterre, N. P. J. Day and N. J. White, The role of simple mathematical models in malaria elimination strategy design, Malaria Journal, 8 (2009), 212. |
[31] |