
Previous Article
Regularity of the free boundary for the American put option
 DCDSB Home
 This Issue

Next Article
Analysis and stability of bentcore liquid crystal fibers
Existence and compactness for weak solutions to Bellman systems with critical growth
1.  Ashbel Smith Professor, The University of Texas at Dallas, Chair Professor of Risk and Decision Analysis, The Hong Kong Polytechnic University, WCU Distinguished Professor, Ajou University, 800 W. Campbell Rd, SM30, Richardson,TX 750803021, United States 
2.  Mathematical Institute, Faculty of Mathematics and Physics, Charles University in Prague, Sokolovská 83, 186 75 Praha 8, Czech Republic 
3.  Institute for Applied Mathematics, Department of Applied Analysis, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany 
References:
[1] 
A. Bensoussan and J. Frehse, Nonlinear elliptic systems in stochastic game theory, J. Reine Angew. Math., 350 (1984), 2367. 
[2] 
A. Bensoussan and J. Frehse, $C^\alpha$regularity results for quasilinear parabolic systems, Comment. Math. Univ. Carolin., 31 (1990), 453474. 
[3] 
A. Bensoussan and J. Frehse, "Regularity Results for Nonlinear Elliptic Systems and Applications," Applied Mathematical Sciences, 151, SpringerVerlag, Berlin, 2002. 
[4] 
A. Bensoussan and J. Frehse, Smooth solutions of systems of quasilinear parabolic equations, A tribute to J. L. Lions, ESAIM Control Optim. Calc. Var., 8 (2002), 169193 (electronic). 
[5] 
A. Bensoussan and J. Frehse, Systems of Bellman equations to stochastic differential games with discount control, Boll. Unione Mat. Ital. (9), 1 (2008), 663681. 
[6] 
A. Bensoussan and J. Frehse, Diagonal elliptic Bellman systems to stochastic differential games with discount control and noncompact coupling, Rend. Mat. Appl. (7), 29 (2009), 116. 
[7] 
A. Bensoussan, J. Frehse and J. Vogelgesang, On a class of nonlinear elliptic systems with applications to Stackelberg and Nash differential games, Chin. Ann. Math., to appear, 2010. 
[8] 
A. Bensoussan, J. Frehse and J. Vogelgesang, Systems of Bellman equations to stochastic differential games with noncompact coupling, Discrete Contin. Dyn. Syst., 27 (2010), 13751389. doi: 10.3934/dcds.2010.27.1375. 
[9] 
A. Bensoussan and J.L. Lions, "Impulse Control and Quasivariational Inequalities," $\mu $, GauthierVillars, Montrouge, Heyden & Son, Inc., Philadelphia, PA, 1984. 
[10] 
L. Boccardo, The Fatou lemma approach to the existence in quasilinear elliptic equations with natural growth terms, Complex Var. Elliptic Equ., 55 (2010), 445453. doi: 10.1080/17476930903276241. 
[11] 
M. Bulíček and J. Frehse, On nonlinear elliptic Bellman systems for a class of stochastic differential games in arbitrary dimension, Math. Models Methods Appl. Sci., 21 (2011), 215240. doi: 10.1142/S0218202511005027. 
[12] 
W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Applications of Mathematics, No. 1, SpringerVerlag, BerlinNew York, 1975. 
[13] 
J. Frehse, A discontinuous solution of a mildly nonlinear elliptic system, Math. Z., 134 (1973), 229230. doi: 10.1007/BF01214096. 
[14] 
J. Frehse, Existence and perturbation theorems for nonlinear elliptic systems, in "Nonlinear Partial Differential Equations and their Applications," Collège de France Seminar, Vol. IV (Paris, 1981/1982), Res. Notes in Math., 84, Pitman, Boston, MA, (1983), 87111. 
[15] 
J. Frehse, A refinement of Rellich's theorem, Rend. Mat. (7), 5 (1985), 229242. 
[16] 
J. Frehse, Remarks on diagonal elliptic systems, in "Partial Differential Equations and Calculus of Variations," Lecture Notes in Math., 1357, Springer, Berlin, (1988), 198210. 
[17] 
J. Frehse, Bellman systems of stochastic differential games with three players, in "Optimal Control and Partial Differential Equation," Conference, (2001), 322. 
[18] 
A. Friedman, "Stochastic Differential Equations and Applications," Vol. 2, Probability and Mathematical Statistics, Vol. 28, Academic Press [Harcourt Brace Jovanovich Publishers], New YorkLondon, 1976. 
[19] 
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, SpringerVerlag, Berlin, 2001. 
[20] 
S. Hildebrandt, Nonlinear elliptic systems and harmonic mappings, in "Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations," Vol. 1, 2, 3 (Beijing, 1980), Science Press, Beijing, (1982), 481615. 
[21] 
O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translated from the Russian by S. Smith, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1967. 
[22] 
O. A. Ladyžhenskaya and N. N. Ural'ceva, "Linear and Quasilinear Elliptic Equations," Translated from the Russian by Scripta Technica, Inc., Translation editor: Leon Ehrenpreis, Academic Press, New YorkLondon, 1968. 
[23] 
R. Landes, On the existence of weak solutions of perturbated systems with critical growth, J. Reine Angew. Math., 393 (1989), 2138. 
[24] 
F. Murat, L'injection du cône positif de $H^1$ dans $W^{1,q}$ est compacte pour tout $q < 2$, J. Math. Pures Appl. (9), 60 (1981), 309322. 
[25] 
W. von Wahl and M. Wiegner, Über die Hölderstetigkeit schwacher Lösungen semilinearer elliptischer Systeme mit einseitiger Bedingung, Manuscripta Math., 19 (1976), 385399. doi: 10.1007/BF01278926. 
[26] 
M. Wiegner, Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme, Math. Z., 147 (1976), 2128. 
[27] 
M. Wiegner, "Das Existenz und Regularitätsproblem bei Systemen nichtlinearer elliptischer Differentialgleichungen," Habilitation thesis, University of Bochum, 1977. 
show all references
References:
[1] 
A. Bensoussan and J. Frehse, Nonlinear elliptic systems in stochastic game theory, J. Reine Angew. Math., 350 (1984), 2367. 
[2] 
A. Bensoussan and J. Frehse, $C^\alpha$regularity results for quasilinear parabolic systems, Comment. Math. Univ. Carolin., 31 (1990), 453474. 
[3] 
A. Bensoussan and J. Frehse, "Regularity Results for Nonlinear Elliptic Systems and Applications," Applied Mathematical Sciences, 151, SpringerVerlag, Berlin, 2002. 
[4] 
A. Bensoussan and J. Frehse, Smooth solutions of systems of quasilinear parabolic equations, A tribute to J. L. Lions, ESAIM Control Optim. Calc. Var., 8 (2002), 169193 (electronic). 
[5] 
A. Bensoussan and J. Frehse, Systems of Bellman equations to stochastic differential games with discount control, Boll. Unione Mat. Ital. (9), 1 (2008), 663681. 
[6] 
A. Bensoussan and J. Frehse, Diagonal elliptic Bellman systems to stochastic differential games with discount control and noncompact coupling, Rend. Mat. Appl. (7), 29 (2009), 116. 
[7] 
A. Bensoussan, J. Frehse and J. Vogelgesang, On a class of nonlinear elliptic systems with applications to Stackelberg and Nash differential games, Chin. Ann. Math., to appear, 2010. 
[8] 
A. Bensoussan, J. Frehse and J. Vogelgesang, Systems of Bellman equations to stochastic differential games with noncompact coupling, Discrete Contin. Dyn. Syst., 27 (2010), 13751389. doi: 10.3934/dcds.2010.27.1375. 
[9] 
A. Bensoussan and J.L. Lions, "Impulse Control and Quasivariational Inequalities," $\mu $, GauthierVillars, Montrouge, Heyden & Son, Inc., Philadelphia, PA, 1984. 
[10] 
L. Boccardo, The Fatou lemma approach to the existence in quasilinear elliptic equations with natural growth terms, Complex Var. Elliptic Equ., 55 (2010), 445453. doi: 10.1080/17476930903276241. 
[11] 
M. Bulíček and J. Frehse, On nonlinear elliptic Bellman systems for a class of stochastic differential games in arbitrary dimension, Math. Models Methods Appl. Sci., 21 (2011), 215240. doi: 10.1142/S0218202511005027. 
[12] 
W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Applications of Mathematics, No. 1, SpringerVerlag, BerlinNew York, 1975. 
[13] 
J. Frehse, A discontinuous solution of a mildly nonlinear elliptic system, Math. Z., 134 (1973), 229230. doi: 10.1007/BF01214096. 
[14] 
J. Frehse, Existence and perturbation theorems for nonlinear elliptic systems, in "Nonlinear Partial Differential Equations and their Applications," Collège de France Seminar, Vol. IV (Paris, 1981/1982), Res. Notes in Math., 84, Pitman, Boston, MA, (1983), 87111. 
[15] 
J. Frehse, A refinement of Rellich's theorem, Rend. Mat. (7), 5 (1985), 229242. 
[16] 
J. Frehse, Remarks on diagonal elliptic systems, in "Partial Differential Equations and Calculus of Variations," Lecture Notes in Math., 1357, Springer, Berlin, (1988), 198210. 
[17] 
J. Frehse, Bellman systems of stochastic differential games with three players, in "Optimal Control and Partial Differential Equation," Conference, (2001), 322. 
[18] 
A. Friedman, "Stochastic Differential Equations and Applications," Vol. 2, Probability and Mathematical Statistics, Vol. 28, Academic Press [Harcourt Brace Jovanovich Publishers], New YorkLondon, 1976. 
[19] 
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, SpringerVerlag, Berlin, 2001. 
[20] 
S. Hildebrandt, Nonlinear elliptic systems and harmonic mappings, in "Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations," Vol. 1, 2, 3 (Beijing, 1980), Science Press, Beijing, (1982), 481615. 
[21] 
O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translated from the Russian by S. Smith, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1967. 
[22] 
O. A. Ladyžhenskaya and N. N. Ural'ceva, "Linear and Quasilinear Elliptic Equations," Translated from the Russian by Scripta Technica, Inc., Translation editor: Leon Ehrenpreis, Academic Press, New YorkLondon, 1968. 
[23] 
R. Landes, On the existence of weak solutions of perturbated systems with critical growth, J. Reine Angew. Math., 393 (1989), 2138. 
[24] 
F. Murat, L'injection du cône positif de $H^1$ dans $W^{1,q}$ est compacte pour tout $q < 2$, J. Math. Pures Appl. (9), 60 (1981), 309322. 
[25] 
W. von Wahl and M. Wiegner, Über die Hölderstetigkeit schwacher Lösungen semilinearer elliptischer Systeme mit einseitiger Bedingung, Manuscripta Math., 19 (1976), 385399. doi: 10.1007/BF01278926. 
[26] 
M. Wiegner, Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme, Math. Z., 147 (1976), 2128. 
[27] 
M. Wiegner, "Das Existenz und Regularitätsproblem bei Systemen nichtlinearer elliptischer Differentialgleichungen," Habilitation thesis, University of Bochum, 1977. 
[1] 
Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 293305. doi: 10.3934/cpaa.2014.13.293 
[2] 
Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub or supercritical nonlinearity. Communications on Pure and Applied Analysis, 2010, 9 (3) : 761778. doi: 10.3934/cpaa.2010.9.761 
[3] 
Yanqin Fang, De Tang. Method of subsuper solutions for fractional elliptic equations. Discrete and Continuous Dynamical Systems  B, 2018, 23 (8) : 31533165. doi: 10.3934/dcdsb.2017212 
[4] 
Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 89110. doi: 10.3934/dcds.2013.33.89 
[5] 
Wanwan Wang, Hongxia Zhang, Huyuan Chen. Remarks on weak solutions of fractional elliptic equations. Communications on Pure and Applied Analysis, 2016, 15 (2) : 335340. doi: 10.3934/cpaa.2016.15.335 
[6] 
Matheus C. Bortolan, José Manuel Uzal. Upper and weaklower semicontinuity of pullback attractors to impulsive evolution processes. Discrete and Continuous Dynamical Systems  B, 2021, 26 (7) : 36673692. doi: 10.3934/dcdsb.2020252 
[7] 
Alain Bensoussan, Jens Frehse, Jens Vogelgesang. Systems of Bellman equations to stochastic differential games with noncompact coupling. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 13751389. doi: 10.3934/dcds.2010.27.1375 
[8] 
Ahmed Aberqi, Jaouad Bennouna, Omar Benslimane, Maria Alessandra Ragusa. Weak solvability of nonlinear elliptic equations involving variable exponents. Discrete and Continuous Dynamical Systems  S, 2022 doi: 10.3934/dcdss.2022105 
[9] 
Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159169. doi: 10.3934/proc.2013.2013.159 
[10] 
Li Ma, Lin Zhao. Regularity for positive weak solutions to semilinear elliptic equations. Communications on Pure and Applied Analysis, 2008, 7 (3) : 631643. doi: 10.3934/cpaa.2008.7.631 
[11] 
Takahiro Hashimoto. Nonexistence of weak solutions of quasilinear elliptic equations with variable coefficients. Conference Publications, 2009, 2009 (Special) : 349358. doi: 10.3934/proc.2009.2009.349 
[12] 
Patrick Winkert, Rico Zacher. A priori bounds for weak solutions to elliptic equations with nonstandard growth. Discrete and Continuous Dynamical Systems  S, 2012, 5 (4) : 865878. doi: 10.3934/dcdss.2012.5.865 
[13] 
Nakao Hayashi, Chunhua Li, Pavel I. Naumkin. Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2017, 16 (6) : 20892104. doi: 10.3934/cpaa.2017103 
[14] 
N. U. Ahmed. Weak solutions of stochastic reaction diffusion equations and their optimal control. Discrete and Continuous Dynamical Systems  S, 2018, 11 (6) : 10111029. doi: 10.3934/dcdss.2018059 
[15] 
Ana Maria Bertone, J.V. Goncalves. Discontinuous elliptic problems in $R^N$: Lower and upper solutions and variational principles. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 315328. doi: 10.3934/dcds.2000.6.315 
[16] 
Frédéric Abergel, JeanMichel Rakotoson. Gradient blowup in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 18091818. doi: 10.3934/dcds.2013.33.1809 
[17] 
Qilong Zhai, Ran Zhang. Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes. Discrete and Continuous Dynamical Systems  B, 2019, 24 (1) : 403413. doi: 10.3934/dcdsb.2018091 
[18] 
Peiying Chen. Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations. Electronic Research Announcements, 2017, 24: 3852. doi: 10.3934/era.2017.24.005 
[19] 
Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete and Continuous Dynamical Systems  B, 2013, 18 (1) : 5794. doi: 10.3934/dcdsb.2013.18.57 
[20] 
Alain Bensoussan, Jens Frehse. On diagonal elliptic and parabolic systems with superquadratic Hamiltonians. Communications on Pure and Applied Analysis, 2009, 8 (1) : 8394. doi: 10.3934/cpaa.2009.8.83 
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]