September  2012, 17(6): 1761-1774. doi: 10.3934/dcdsb.2012.17.1761

Dead-core rates for the porous medium equation with a strong absorption

1. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260

2. 

Department of Mathematics, Tamkang University, Tamsui, Taipei County 25137

3. 

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556

Received  March 2011 Revised  August 2011 Published  May 2012

We study the dead-core rate for the solution of the porous medium equation with a strong absorption. It is known that solutions with certain class of initial data develop a dead-core in finite time. We prove that, unlike the cases of semilinear heat equation and fast diffusion equation, there are solutions with the self-similar dead-core rate. This result is based on the construction of a Lyapunov functional, some a priori estimates, and a delicate analysis of the associated re-scaled ordinary differential equation.
Citation: Xinfu Chen, Jong-Shenq Guo, Bei Hu. Dead-core rates for the porous medium equation with a strong absorption. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1761-1774. doi: 10.3934/dcdsb.2012.17.1761
References:
[1]

C. Bandle, T. Nanbu and I. Stakgold, Porous medium equation with absorption,, SIAM J. Math. Anal., 29 (1998), 1268.  doi: 10.1137/S0036141096311423.  Google Scholar

[2]

C. Bandle and I. Stakgold, The formation of the dead core in parabolic reaction-diffusion problems,, Trans. Amer. Math. Soc., 286 (1984), 275.  doi: 10.1090/S0002-9947-1984-0756040-1.  Google Scholar

[3]

Q. Chen and L. Wang, On the dead core behavior for a semilinear heat equation,, Math. Appl. (Wuhan), 10 (1997), 22.   Google Scholar

[4]

J.-S. Guo and B. Hu, Quenching profile for a quasilinear parabolic equation,, Quarterly Appl. Math., 58 (2000), 613.   Google Scholar

[5]

J.-S. Guo, C.-T. Ling and Ph. Souplet, Non-self-similar dead-core rate for the fast diffusion equation with strong absorption,, Nonlinearity, 23 (2010), 657.  doi: 10.1088/0951-7715/23/3/013.  Google Scholar

[6]

J.-S. Guo, H. Matano and C.-C. Wu, An application of braid group theory to the finite time dead-core rate,, J. Evolution Equations, 10 (2010), 835.  doi: 10.1007/s00028-010-0072-0.  Google Scholar

[7]

J.-S. Guo and Ph. Souplet, Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up,, Math. Ann., 331 (2005), 651.  doi: 10.1007/s00208-004-0601-7.  Google Scholar

[8]

J.-S. Guo and C.-C. Wu, Finite time dead-core rate for the heat equation with a strong absorption,, Tohoku Math. J. (2), 60 (2008), 37.  doi: 10.2748/tmj/1206734406.  Google Scholar

[9]

Y. Seki, On exact dead-core rates for a semilinear heat equation with strong absorption,, Commun. Contemp. Math., 13 (2011), 1.   Google Scholar

[10]

I. Stakgold, Reaction-diffusion problems in chemical engineering,, in, 1224 (1986), 119.   Google Scholar

[11]

T. I. Zelenjak, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable,, Differential Equations, 4 (1968), 17.   Google Scholar

show all references

References:
[1]

C. Bandle, T. Nanbu and I. Stakgold, Porous medium equation with absorption,, SIAM J. Math. Anal., 29 (1998), 1268.  doi: 10.1137/S0036141096311423.  Google Scholar

[2]

C. Bandle and I. Stakgold, The formation of the dead core in parabolic reaction-diffusion problems,, Trans. Amer. Math. Soc., 286 (1984), 275.  doi: 10.1090/S0002-9947-1984-0756040-1.  Google Scholar

[3]

Q. Chen and L. Wang, On the dead core behavior for a semilinear heat equation,, Math. Appl. (Wuhan), 10 (1997), 22.   Google Scholar

[4]

J.-S. Guo and B. Hu, Quenching profile for a quasilinear parabolic equation,, Quarterly Appl. Math., 58 (2000), 613.   Google Scholar

[5]

J.-S. Guo, C.-T. Ling and Ph. Souplet, Non-self-similar dead-core rate for the fast diffusion equation with strong absorption,, Nonlinearity, 23 (2010), 657.  doi: 10.1088/0951-7715/23/3/013.  Google Scholar

[6]

J.-S. Guo, H. Matano and C.-C. Wu, An application of braid group theory to the finite time dead-core rate,, J. Evolution Equations, 10 (2010), 835.  doi: 10.1007/s00028-010-0072-0.  Google Scholar

[7]

J.-S. Guo and Ph. Souplet, Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up,, Math. Ann., 331 (2005), 651.  doi: 10.1007/s00208-004-0601-7.  Google Scholar

[8]

J.-S. Guo and C.-C. Wu, Finite time dead-core rate for the heat equation with a strong absorption,, Tohoku Math. J. (2), 60 (2008), 37.  doi: 10.2748/tmj/1206734406.  Google Scholar

[9]

Y. Seki, On exact dead-core rates for a semilinear heat equation with strong absorption,, Commun. Contemp. Math., 13 (2011), 1.   Google Scholar

[10]

I. Stakgold, Reaction-diffusion problems in chemical engineering,, in, 1224 (1986), 119.   Google Scholar

[11]

T. I. Zelenjak, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable,, Differential Equations, 4 (1968), 17.   Google Scholar

[1]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[2]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[3]

Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135

[4]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[5]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[6]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[7]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[8]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[9]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[10]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[11]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[12]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[13]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[14]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[15]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[16]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[19]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[20]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]