-
Previous Article
Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox
- DCDS-B Home
- This Issue
-
Next Article
Regularity of the free boundary for the American put option
Dead-core rates for the porous medium equation with a strong absorption
1. | Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260 |
2. | Department of Mathematics, Tamkang University, Tamsui, Taipei County 25137 |
3. | Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556 |
References:
[1] |
C. Bandle, T. Nanbu and I. Stakgold, Porous medium equation with absorption,, SIAM J. Math. Anal., 29 (1998), 1268.
doi: 10.1137/S0036141096311423. |
[2] |
C. Bandle and I. Stakgold, The formation of the dead core in parabolic reaction-diffusion problems,, Trans. Amer. Math. Soc., 286 (1984), 275.
doi: 10.1090/S0002-9947-1984-0756040-1. |
[3] |
Q. Chen and L. Wang, On the dead core behavior for a semilinear heat equation,, Math. Appl. (Wuhan), 10 (1997), 22.
|
[4] |
J.-S. Guo and B. Hu, Quenching profile for a quasilinear parabolic equation,, Quarterly Appl. Math., 58 (2000), 613.
|
[5] |
J.-S. Guo, C.-T. Ling and Ph. Souplet, Non-self-similar dead-core rate for the fast diffusion equation with strong absorption,, Nonlinearity, 23 (2010), 657.
doi: 10.1088/0951-7715/23/3/013. |
[6] |
J.-S. Guo, H. Matano and C.-C. Wu, An application of braid group theory to the finite time dead-core rate,, J. Evolution Equations, 10 (2010), 835.
doi: 10.1007/s00028-010-0072-0. |
[7] |
J.-S. Guo and Ph. Souplet, Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up,, Math. Ann., 331 (2005), 651.
doi: 10.1007/s00208-004-0601-7. |
[8] |
J.-S. Guo and C.-C. Wu, Finite time dead-core rate for the heat equation with a strong absorption,, Tohoku Math. J. (2), 60 (2008), 37.
doi: 10.2748/tmj/1206734406. |
[9] |
Y. Seki, On exact dead-core rates for a semilinear heat equation with strong absorption,, Commun. Contemp. Math., 13 (2011), 1.
|
[10] |
I. Stakgold, Reaction-diffusion problems in chemical engineering,, in, 1224 (1986), 119.
|
[11] |
T. I. Zelenjak, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable,, Differential Equations, 4 (1968), 17.
|
show all references
References:
[1] |
C. Bandle, T. Nanbu and I. Stakgold, Porous medium equation with absorption,, SIAM J. Math. Anal., 29 (1998), 1268.
doi: 10.1137/S0036141096311423. |
[2] |
C. Bandle and I. Stakgold, The formation of the dead core in parabolic reaction-diffusion problems,, Trans. Amer. Math. Soc., 286 (1984), 275.
doi: 10.1090/S0002-9947-1984-0756040-1. |
[3] |
Q. Chen and L. Wang, On the dead core behavior for a semilinear heat equation,, Math. Appl. (Wuhan), 10 (1997), 22.
|
[4] |
J.-S. Guo and B. Hu, Quenching profile for a quasilinear parabolic equation,, Quarterly Appl. Math., 58 (2000), 613.
|
[5] |
J.-S. Guo, C.-T. Ling and Ph. Souplet, Non-self-similar dead-core rate for the fast diffusion equation with strong absorption,, Nonlinearity, 23 (2010), 657.
doi: 10.1088/0951-7715/23/3/013. |
[6] |
J.-S. Guo, H. Matano and C.-C. Wu, An application of braid group theory to the finite time dead-core rate,, J. Evolution Equations, 10 (2010), 835.
doi: 10.1007/s00028-010-0072-0. |
[7] |
J.-S. Guo and Ph. Souplet, Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up,, Math. Ann., 331 (2005), 651.
doi: 10.1007/s00208-004-0601-7. |
[8] |
J.-S. Guo and C.-C. Wu, Finite time dead-core rate for the heat equation with a strong absorption,, Tohoku Math. J. (2), 60 (2008), 37.
doi: 10.2748/tmj/1206734406. |
[9] |
Y. Seki, On exact dead-core rates for a semilinear heat equation with strong absorption,, Commun. Contemp. Math., 13 (2011), 1.
|
[10] |
I. Stakgold, Reaction-diffusion problems in chemical engineering,, in, 1224 (1986), 119.
|
[11] |
T. I. Zelenjak, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable,, Differential Equations, 4 (1968), 17.
|
[1] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[2] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[3] |
Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135 |
[4] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[5] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[6] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[7] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[8] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[9] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[10] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[11] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[12] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[13] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[14] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
[15] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[16] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[17] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[18] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[19] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[20] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]