September  2012, 17(6): 1775-1794. doi: 10.3934/dcdsb.2012.17.1775

Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox

1. 

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, United States, United States

Received  May 2011 Revised  November 2011 Published  May 2012

Keizer's paradox refers to the observation that deterministic and stochastic descriptions of chemical reactions can predict vastly different long term outcomes. In this paper, we use slow manifold analysis to help resolve this paradox for four variants of a simple autocatalytic reaction. We also provide rigorous estimates of the spectral gap of important linear operators, which establishes parameter ranges in which the slow manifold analysis is appropriate.
Citation: Parker Childs, James P. Keener. Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1775-1794. doi: 10.3934/dcdsb.2012.17.1775
References:
[1]

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'' Pearson Education, Inc., 2003.

[2]

J. Beischke, P. Weber, N. Sarafoff, M. Beekes, A. Giese and H. Kretzschmar, Autocatalytic self-propagation of misfolded prion protein, Proc. Natl. Acad. Sci., 101 (2004), 12207-12211. doi: 10.1073/pnas.0404650101.

[3]

C. W. Gardiner, "Handbook of Stochastic Methods. For Physics, Chemistry and the Natural Sciences,'' Second edition, Springer Series in Synergetics, 13, Springer-Verlag, Berlin, 1985.

[4]

B. L. Granovsky and A. I. Zeifman, The decay function of nonhomogeneous birth-death processes, with application to mean-field models, Stoch. Process. Appl., 72 (1997), 105-120. doi: 10.1016/S0304-4149(97)00085-9.

[5]

B. L. Granovsky and A. I. Zeifman, The $N$-limit of spectral gap of a class of birth-death Markov chains, Appl. Stoch. Models Bus. Ind., 16 (2000), 235-248. doi: 10.1002/1526-4025(200010/12)16:4<235::AID-ASMB415>3.3.CO;2-J.

[6]

J. Keizer, "Statistical Thermodynamics of Nonequilibrium Processes,'' Springer-Verlag, 1987.

[7]

T. G. Kurtz, Limit theorems for sequences of jump Markov processes approximating ordinary differential processes, J. Appl. Prob., 8 (1971), 344-356.

[8]

T. G. Kurtz, The relationship between stochastic and deterministic models for chemical reactions, J. Chem. Phys., 57 (1972), 2976-2978. doi: 10.1063/1.1678692.

[9]

I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model, Journal of Theoretical Biology, 211 (2001), 11-27. doi: 10.1006/jtbi.2001.2328.

[10]

H. Qian and L. M. Bishop, The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: Linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks, Int. J. Mol. Sci., 11 (2010), 3472-3500. doi: 10.3390/ijms11093472.

[11]

N. van Kampen, "Stochastic Processes in Physics and Chemistry,'' Lecture Notes in Mathematics, 888, North-Holland Publishing Co., Amsterdam-New York, 1981.

[12]

M. Vellela and H. Qian, A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox, Bull. Math. Biol., 69 (2007), 1727-1746. doi: 10.1007/s11538-006-9188-3.

show all references

References:
[1]

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'' Pearson Education, Inc., 2003.

[2]

J. Beischke, P. Weber, N. Sarafoff, M. Beekes, A. Giese and H. Kretzschmar, Autocatalytic self-propagation of misfolded prion protein, Proc. Natl. Acad. Sci., 101 (2004), 12207-12211. doi: 10.1073/pnas.0404650101.

[3]

C. W. Gardiner, "Handbook of Stochastic Methods. For Physics, Chemistry and the Natural Sciences,'' Second edition, Springer Series in Synergetics, 13, Springer-Verlag, Berlin, 1985.

[4]

B. L. Granovsky and A. I. Zeifman, The decay function of nonhomogeneous birth-death processes, with application to mean-field models, Stoch. Process. Appl., 72 (1997), 105-120. doi: 10.1016/S0304-4149(97)00085-9.

[5]

B. L. Granovsky and A. I. Zeifman, The $N$-limit of spectral gap of a class of birth-death Markov chains, Appl. Stoch. Models Bus. Ind., 16 (2000), 235-248. doi: 10.1002/1526-4025(200010/12)16:4<235::AID-ASMB415>3.3.CO;2-J.

[6]

J. Keizer, "Statistical Thermodynamics of Nonequilibrium Processes,'' Springer-Verlag, 1987.

[7]

T. G. Kurtz, Limit theorems for sequences of jump Markov processes approximating ordinary differential processes, J. Appl. Prob., 8 (1971), 344-356.

[8]

T. G. Kurtz, The relationship between stochastic and deterministic models for chemical reactions, J. Chem. Phys., 57 (1972), 2976-2978. doi: 10.1063/1.1678692.

[9]

I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model, Journal of Theoretical Biology, 211 (2001), 11-27. doi: 10.1006/jtbi.2001.2328.

[10]

H. Qian and L. M. Bishop, The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: Linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks, Int. J. Mol. Sci., 11 (2010), 3472-3500. doi: 10.3390/ijms11093472.

[11]

N. van Kampen, "Stochastic Processes in Physics and Chemistry,'' Lecture Notes in Mathematics, 888, North-Holland Publishing Co., Amsterdam-New York, 1981.

[12]

M. Vellela and H. Qian, A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox, Bull. Math. Biol., 69 (2007), 1727-1746. doi: 10.1007/s11538-006-9188-3.

[1]

Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic and Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153

[2]

Congming Li, Eric S. Wright. Modeling chemical reactions in rivers: A three component reaction. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 377-384. doi: 10.3934/dcds.2001.7.373

[3]

Arno F. Münster. Simulation of stationary chemical patterns and waves in ionic reactions. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 35-46. doi: 10.3934/dcdsb.2002.2.35

[4]

Marzia Bisi, Maria Groppi, Giampiero Spiga. Flame structure from a kinetic model for chemical reactions. Kinetic and Related Models, 2010, 3 (1) : 17-34. doi: 10.3934/krm.2010.3.17

[5]

Wenxiong Chen, Congming Li, Eric S. Wright. On a nonlinear parabolic system-modeling chemical reactions in rivers. Communications on Pure and Applied Analysis, 2005, 4 (4) : 889-899. doi: 10.3934/cpaa.2005.4.889

[6]

Julien Coatléven, Claudio Altafini. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences & Engineering, 2010, 7 (2) : 301-312. doi: 10.3934/mbe.2010.7.301

[7]

Andrea Picco, Lamberto Rondoni. Boltzmann maps for networks of chemical reactions and the multi-stability problem. Networks and Heterogeneous Media, 2009, 4 (3) : 501-526. doi: 10.3934/nhm.2009.4.501

[8]

Steinar Evje, Aksel Hiorth, Merete V. Madland, Reidar I. Korsnes. A mathematical model relevant for weakening of chalk reservoirs due to chemical reactions. Networks and Heterogeneous Media, 2009, 4 (4) : 755-788. doi: 10.3934/nhm.2009.4.755

[9]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[10]

Wenying Feng, Guang Zhang, Yikang Chai. Existence of positive solutions for second order differential equations arising from chemical reactor theory. Conference Publications, 2007, 2007 (Special) : 373-381. doi: 10.3934/proc.2007.2007.373

[11]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic and Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[12]

Jean-Pierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4239-4269. doi: 10.3934/dcds.2013.33.4239

[13]

Ross Cressman, Vlastimil Křivan. Using chemical reaction network theory to show stability of distributional dynamics in game theory. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021030

[14]

Shuang Chen, Jun Shen. Large spectral gap induced by small delay and its application to reduction. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4533-4564. doi: 10.3934/dcds.2020190

[15]

Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic and Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037

[16]

Artur Stephan, Holger Stephan. Memory equations as reduced Markov processes. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2133-2155. doi: 10.3934/dcds.2019089

[17]

H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1

[18]

Vladimir Kazakov. Sampling - reconstruction procedure with jitter of markov continuous processes formed by stochastic differential equations of the first order. Conference Publications, 2009, 2009 (Special) : 433-441. doi: 10.3934/proc.2009.2009.433

[19]

Elena Shchepakina, Olga Korotkova. Canard explosion in chemical and optical systems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 495-512. doi: 10.3934/dcdsb.2013.18.495

[20]

Yun Li, Fuke Wu, George Yin. Asymptotic behavior of gene expression with complete memory and two-time scales based on the chemical Langevin equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4417-4443. doi: 10.3934/dcdsb.2019125

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (99)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]