September  2012, 17(6): 1775-1794. doi: 10.3934/dcdsb.2012.17.1775

Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox

1. 

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, United States, United States

Received  May 2011 Revised  November 2011 Published  May 2012

Keizer's paradox refers to the observation that deterministic and stochastic descriptions of chemical reactions can predict vastly different long term outcomes. In this paper, we use slow manifold analysis to help resolve this paradox for four variants of a simple autocatalytic reaction. We also provide rigorous estimates of the spectral gap of important linear operators, which establishes parameter ranges in which the slow manifold analysis is appropriate.
Citation: Parker Childs, James P. Keener. Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1775-1794. doi: 10.3934/dcdsb.2012.17.1775
References:
[1]

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'', Pearson Education, (2003).   Google Scholar

[2]

J. Beischke, P. Weber, N. Sarafoff, M. Beekes, A. Giese and H. Kretzschmar, Autocatalytic self-propagation of misfolded prion protein,, Proc. Natl. Acad. Sci., 101 (2004), 12207.  doi: 10.1073/pnas.0404650101.  Google Scholar

[3]

C. W. Gardiner, "Handbook of Stochastic Methods. For Physics, Chemistry and the Natural Sciences,'' Second edition,, Springer Series in Synergetics, 13 (1985).   Google Scholar

[4]

B. L. Granovsky and A. I. Zeifman, The decay function of nonhomogeneous birth-death processes, with application to mean-field models,, Stoch. Process. Appl., 72 (1997), 105.  doi: 10.1016/S0304-4149(97)00085-9.  Google Scholar

[5]

B. L. Granovsky and A. I. Zeifman, The $N$-limit of spectral gap of a class of birth-death Markov chains,, Appl. Stoch. Models Bus. Ind., 16 (2000), 235.  doi: 10.1002/1526-4025(200010/12)16:4<235::AID-ASMB415>3.3.CO;2-J.  Google Scholar

[6]

J. Keizer, "Statistical Thermodynamics of Nonequilibrium Processes,'', Springer-Verlag, (1987).   Google Scholar

[7]

T. G. Kurtz, Limit theorems for sequences of jump Markov processes approximating ordinary differential processes,, J. Appl. Prob., 8 (1971), 344.   Google Scholar

[8]

T. G. Kurtz, The relationship between stochastic and deterministic models for chemical reactions,, J. Chem. Phys., 57 (1972), 2976.  doi: 10.1063/1.1678692.  Google Scholar

[9]

I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model,, Journal of Theoretical Biology, 211 (2001), 11.  doi: 10.1006/jtbi.2001.2328.  Google Scholar

[10]

H. Qian and L. M. Bishop, The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: Linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks,, Int. J. Mol. Sci., 11 (2010), 3472.  doi: 10.3390/ijms11093472.  Google Scholar

[11]

N. van Kampen, "Stochastic Processes in Physics and Chemistry,'', Lecture Notes in Mathematics, 888 (1981).   Google Scholar

[12]

M. Vellela and H. Qian, A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox,, Bull. Math. Biol., 69 (2007), 1727.  doi: 10.1007/s11538-006-9188-3.  Google Scholar

show all references

References:
[1]

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'', Pearson Education, (2003).   Google Scholar

[2]

J. Beischke, P. Weber, N. Sarafoff, M. Beekes, A. Giese and H. Kretzschmar, Autocatalytic self-propagation of misfolded prion protein,, Proc. Natl. Acad. Sci., 101 (2004), 12207.  doi: 10.1073/pnas.0404650101.  Google Scholar

[3]

C. W. Gardiner, "Handbook of Stochastic Methods. For Physics, Chemistry and the Natural Sciences,'' Second edition,, Springer Series in Synergetics, 13 (1985).   Google Scholar

[4]

B. L. Granovsky and A. I. Zeifman, The decay function of nonhomogeneous birth-death processes, with application to mean-field models,, Stoch. Process. Appl., 72 (1997), 105.  doi: 10.1016/S0304-4149(97)00085-9.  Google Scholar

[5]

B. L. Granovsky and A. I. Zeifman, The $N$-limit of spectral gap of a class of birth-death Markov chains,, Appl. Stoch. Models Bus. Ind., 16 (2000), 235.  doi: 10.1002/1526-4025(200010/12)16:4<235::AID-ASMB415>3.3.CO;2-J.  Google Scholar

[6]

J. Keizer, "Statistical Thermodynamics of Nonequilibrium Processes,'', Springer-Verlag, (1987).   Google Scholar

[7]

T. G. Kurtz, Limit theorems for sequences of jump Markov processes approximating ordinary differential processes,, J. Appl. Prob., 8 (1971), 344.   Google Scholar

[8]

T. G. Kurtz, The relationship between stochastic and deterministic models for chemical reactions,, J. Chem. Phys., 57 (1972), 2976.  doi: 10.1063/1.1678692.  Google Scholar

[9]

I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model,, Journal of Theoretical Biology, 211 (2001), 11.  doi: 10.1006/jtbi.2001.2328.  Google Scholar

[10]

H. Qian and L. M. Bishop, The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: Linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks,, Int. J. Mol. Sci., 11 (2010), 3472.  doi: 10.3390/ijms11093472.  Google Scholar

[11]

N. van Kampen, "Stochastic Processes in Physics and Chemistry,'', Lecture Notes in Mathematics, 888 (1981).   Google Scholar

[12]

M. Vellela and H. Qian, A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox,, Bull. Math. Biol., 69 (2007), 1727.  doi: 10.1007/s11538-006-9188-3.  Google Scholar

[1]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[2]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[3]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[4]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[5]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[6]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[7]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[8]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[9]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[10]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[11]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[12]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[13]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[14]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[15]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[16]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[17]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[18]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[19]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[20]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]