September  2012, 17(6): 1809-1829. doi: 10.3934/dcdsb.2012.17.1809

Equity valuation under stock dilution and buy-back

1. 

Financial Engineering Research Center, Soochow University, Suzhou, Jiangsu 215006, China

2. 

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, United States

Received  May 2011 Revised  December 2011 Published  May 2012

Employing and generalizing the (continuous time, incomplete market) equity valuation (and hedging) theory introduced recently by one of the authors, the effect of stock dilution and buy-back on the equity value is quantified. Both, neutral and indifference pricing methodologies are considered, and results of different levels of complexity are provided. Hedging results are provided as well. Both pricing and hedging results are obtained as special cases of the general methodology of pricing and hedging in incomplete markets recently developed by one of the authors.
Citation: Yaling Cui, Srdjan D. Stojanovic. Equity valuation under stock dilution and buy-back. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1809-1829. doi: 10.3934/dcdsb.2012.17.1809
References:
[1]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Political Econ. \textbf{81} (1973), 81 (1973), 637.   Google Scholar

[2]

F. Black, The dividend puzzle,, Journal of Portfolio Management, 2 (1976), 5.   Google Scholar

[3]

Mark H. A. Davis, Vassilios G. Panas and Thaleia Zariphopoulou, European option pricing with transaction costs,, SIAM J. Control Optim., 31 (1993), 470.  doi: 10.1137/0331022.  Google Scholar

[4]

Avner Friedman, "Stochastic Differential Equations and Applications," Vol. 1,, Probability and Mathematical Statistics, (1975).   Google Scholar

[5]

S. D. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs,, Review of Futures Markets, 8 (1989), 222.   Google Scholar

[6]

Jiang Lishang, "Mathematical Modeling and Methods of Option Pricing,", World Scientific Publishing Co., (2005).   Google Scholar

[7]

Jan Kallsen, Utility-based derivative pricing in incomplete markets,, in, (2002), 313.   Google Scholar

[8]

Zhuang Kang and Srdjan D. Stojanovic, Interest rate risk premium and equity valuation,, J. Syst. Sci. Complex, 23 (2010), 484.  doi: 10.1007/s11424-010-0142-y.  Google Scholar

[9]

Robert C. Merton, Theory of rational option pricing,, Bell J. Econom. and Management Sci., 4 (1973), 141.   Google Scholar

[10]

R. C. Merton, "Continuous-Time Finance,", Wiley-Blackwell, (1990).   Google Scholar

[11]

M. H. Miller and F. Modigliani, Dividend Policy, Growth, and the Valuation of Shares,, Journal of Business, 34 (1961), 411.  doi: 10.1086/294442.  Google Scholar

[12]

Marek Musiela and Thaleia Zariphopoulou, An example of indifference prices under exponential preferences,, Finance Stoch., 8 (2004), 229.   Google Scholar

[13]

Richard Rouge and Nicole El Karoui, Pricing via utility maximization and entropy,, Mathematical Finance, 10 (2000), 259.  doi: 10.1111/1467-9965.00093.  Google Scholar

[14]

Srdjan D. Stojanovic, Risk premium and fair option prices under stochastic volatility: The HARA solution,, C. R. Math. Acad. Sci. Paris, 340 (2005), 551.  doi: 10.1016/j.crma.2004.11.002.  Google Scholar

[15]

Srdjan D. Stojanovic, "Stochastic Volatility & Risk Premium,", Lecture Notes, (2005).   Google Scholar

[16]

Srdjan D. Stojanovic, Pricing and hedging of multi type contracts under multidimensional risks in incomplete markets modeled by general Itô SDE systems,, Asia Pacific Financial Markets, 13 (2006), 345.  doi: 10.1007/s10690-007-9049-6.  Google Scholar

[17]

Srdjan D. Stojanovic, The dividend puzzle unpuzzled,, 2007., ().   Google Scholar

[18]

Srdjan D. Stojanovic, "Advanced Financial Engineering for Interest Rates, Equity, and FX,", Lecture Notes, (2007).   Google Scholar

[19]

Srdjan D. Stojanovic, Any-utility neutral and indifference pricing and hedging,, International Research Forum, (2010).   Google Scholar

[20]

Srdjan D. Stojanovic, "Neutral and Indifference Pricing, Hedging and Investing,", Springer, (2011).   Google Scholar

[21]

Srdjan D. Stojanovic and Zhuang Kang, General difussive neutral pricing under non-zero portfolio position,, work in progress., ().   Google Scholar

show all references

References:
[1]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Political Econ. \textbf{81} (1973), 81 (1973), 637.   Google Scholar

[2]

F. Black, The dividend puzzle,, Journal of Portfolio Management, 2 (1976), 5.   Google Scholar

[3]

Mark H. A. Davis, Vassilios G. Panas and Thaleia Zariphopoulou, European option pricing with transaction costs,, SIAM J. Control Optim., 31 (1993), 470.  doi: 10.1137/0331022.  Google Scholar

[4]

Avner Friedman, "Stochastic Differential Equations and Applications," Vol. 1,, Probability and Mathematical Statistics, (1975).   Google Scholar

[5]

S. D. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs,, Review of Futures Markets, 8 (1989), 222.   Google Scholar

[6]

Jiang Lishang, "Mathematical Modeling and Methods of Option Pricing,", World Scientific Publishing Co., (2005).   Google Scholar

[7]

Jan Kallsen, Utility-based derivative pricing in incomplete markets,, in, (2002), 313.   Google Scholar

[8]

Zhuang Kang and Srdjan D. Stojanovic, Interest rate risk premium and equity valuation,, J. Syst. Sci. Complex, 23 (2010), 484.  doi: 10.1007/s11424-010-0142-y.  Google Scholar

[9]

Robert C. Merton, Theory of rational option pricing,, Bell J. Econom. and Management Sci., 4 (1973), 141.   Google Scholar

[10]

R. C. Merton, "Continuous-Time Finance,", Wiley-Blackwell, (1990).   Google Scholar

[11]

M. H. Miller and F. Modigliani, Dividend Policy, Growth, and the Valuation of Shares,, Journal of Business, 34 (1961), 411.  doi: 10.1086/294442.  Google Scholar

[12]

Marek Musiela and Thaleia Zariphopoulou, An example of indifference prices under exponential preferences,, Finance Stoch., 8 (2004), 229.   Google Scholar

[13]

Richard Rouge and Nicole El Karoui, Pricing via utility maximization and entropy,, Mathematical Finance, 10 (2000), 259.  doi: 10.1111/1467-9965.00093.  Google Scholar

[14]

Srdjan D. Stojanovic, Risk premium and fair option prices under stochastic volatility: The HARA solution,, C. R. Math. Acad. Sci. Paris, 340 (2005), 551.  doi: 10.1016/j.crma.2004.11.002.  Google Scholar

[15]

Srdjan D. Stojanovic, "Stochastic Volatility & Risk Premium,", Lecture Notes, (2005).   Google Scholar

[16]

Srdjan D. Stojanovic, Pricing and hedging of multi type contracts under multidimensional risks in incomplete markets modeled by general Itô SDE systems,, Asia Pacific Financial Markets, 13 (2006), 345.  doi: 10.1007/s10690-007-9049-6.  Google Scholar

[17]

Srdjan D. Stojanovic, The dividend puzzle unpuzzled,, 2007., ().   Google Scholar

[18]

Srdjan D. Stojanovic, "Advanced Financial Engineering for Interest Rates, Equity, and FX,", Lecture Notes, (2007).   Google Scholar

[19]

Srdjan D. Stojanovic, Any-utility neutral and indifference pricing and hedging,, International Research Forum, (2010).   Google Scholar

[20]

Srdjan D. Stojanovic, "Neutral and Indifference Pricing, Hedging and Investing,", Springer, (2011).   Google Scholar

[21]

Srdjan D. Stojanovic and Zhuang Kang, General difussive neutral pricing under non-zero portfolio position,, work in progress., ().   Google Scholar

[1]

Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial & Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043

[2]

Wei Wang, Linyi Qian, Xiaonan Su. Pricing and hedging catastrophe equity put options under a Markov-modulated jump diffusion model. Journal of Industrial & Management Optimization, 2015, 11 (2) : 493-514. doi: 10.3934/jimo.2015.11.493

[3]

Bei Hu, Lishang Jiang, Jin Liang, Wei Wei. A fully non-linear PDE problem from pricing CDS with counterparty risk. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2001-2016. doi: 10.3934/dcdsb.2012.17.2001

[4]

María Suárez-Taboada, Carlos Vázquez. Numerical methods for PDE models related to pricing and expected lifetime of an extraction project under uncertainty. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3503-3523. doi: 10.3934/dcdsb.2018254

[5]

Feng Tao, Hao Shao, KinKeung Lai. Pricing and modularity decisions under competition. Journal of Industrial & Management Optimization, 2020, 16 (1) : 289-307. doi: 10.3934/jimo.2018152

[6]

Wai-Ki Ching, Tang Li, Sin-Man Choi, Issic K. C. Leung. A tandem queueing system with applications to pricing strategy. Journal of Industrial & Management Optimization, 2009, 5 (1) : 103-114. doi: 10.3934/jimo.2009.5.103

[7]

Maryam Esmaeili, Samane Sedehzade. Designing a hub location and pricing network in a competitive environment. Journal of Industrial & Management Optimization, 2020, 16 (2) : 653-667. doi: 10.3934/jimo.2018172

[8]

Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial & Management Optimization, 2020, 16 (1) : 387-396. doi: 10.3934/jimo.2018158

[9]

Guillermo Magnou, Ernesto Mordecki, Andrés Sosa. Pricing bond options in emerging markets: A case study. Journal of Dynamics & Games, 2018, 5 (1) : 21-30. doi: 10.3934/jdg.2018003

[10]

Mehmet Önal, H. Edwin Romeijn. Two-echelon requirements planning with pricing decisions. Journal of Industrial & Management Optimization, 2009, 5 (4) : 767-781. doi: 10.3934/jimo.2009.5.767

[11]

Jaimie W. Lien, Vladimir V. Mazalov, Jie Zheng. Pricing equilibrium of transportation systems with behavioral commuters. Journal of Dynamics & Games, 2020, 7 (4) : 335-350. doi: 10.3934/jdg.2020026

[12]

Dong-Sheng Ma, Hua-Ming Song. Behavior-based pricing in service differentiated industries. Journal of Dynamics & Games, 2020, 7 (4) : 351-364. doi: 10.3934/jdg.2020027

[13]

Caroline Hillairet, Ying Jiao, Anthony Réveillac. Pricing formulae for derivatives in insurance using Malliavin calculus. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 7-. doi: 10.1186/s41546-018-0028-9

[14]

Peter E. Kloeden, Stefanie Sonner, Christina Surulescu. A nonlocal sample dependence SDE-PDE system modeling proton dynamics in a tumor. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2233-2254. doi: 10.3934/dcdsb.2016045

[15]

Sandesh Athni Hiremath, Christina Surulescu, Anna Zhigun, Stefanie Sonner. On a coupled SDE-PDE system modeling acid-mediated tumor invasion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2339-2369. doi: 10.3934/dcdsb.2018071

[16]

Lisha Wang, Huaming Song, Ding Zhang, Hui Yang. Pricing decisions for complementary products in a fuzzy dual-channel supply chain. Journal of Industrial & Management Optimization, 2019, 15 (1) : 343-364. doi: 10.3934/jimo.2018046

[17]

Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007

[18]

Jingming Pan, Wenqing Shi, Xiaowo Tang. Pricing and ordering strategies of supply chain with selling gift cards. Journal of Industrial & Management Optimization, 2018, 14 (1) : 349-369. doi: 10.3934/jimo.2017050

[19]

Yeu-Shiang Huang, Chih-Chiang Fang, Pin-Chun Lin, Y. Chris Liao. Bundling and pricing decisions for bricks-and-clicks firms with consideration of network externality. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020081

[20]

Marianito R. Rodrigo, Rogemar S. Mamon. Bond pricing formulas for Markov-modulated affine term structure models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020089

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]