September  2012, 17(6): 1841-1858. doi: 10.3934/dcdsb.2012.17.1841

On the local behavior of non-negative solutions to a logarithmically singular equation

1. 

Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville TN 37240, United States, United States

2. 

Dipartimento di Matematica "F. Casorati”, Università di Pavia, Via Ferrata 1, 27100 Pavia

Received  September 2011 Revised  November 2011 Published  May 2012

The local positivity of solutions to logarithmically singular diffusion equations is investigated in some open space-time domain $E\times(0,T]$. It is shown that if at some time level $t_o\in(0,T]$ and some point $x_o\in E$ the solution $u(\cdot,t_o)$ is not identically zero in a neighborhood of $x_o$, in a measure-theoretical sense, then it is strictly positive in a neighborhood of $(x_o, t_o)$. The precise form of this statement is by an intrinsic Harnack-type inequality, which also determines the size of such a neighborhood.
Citation: Emmanuele DiBenedetto, Ugo Gianazza, Naian Liao. On the local behavior of non-negative solutions to a logarithmically singular equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1841-1858. doi: 10.3934/dcdsb.2012.17.1841
References:
[1]

M. Bonforte and J. L. Vázquez, Positivity, local smoothing and Harnack inequalities for very fast diffusion equations,, Adv. Math., 223 (2010), 529.  doi: 10.1016/j.aim.2009.08.021.  Google Scholar

[2]

J. P. Burelbach, S. G. Bankoff and S. H. Davis, Nonlinear stability of evaporating/condensing liquid films,, J. Fluid Mech., 195 (1988), 463.  doi: 10.1017/S0022112088002484.  Google Scholar

[3]

S.-C. Chang, S.-K. Hong and C.-T. Wu, The Harnack estimate for the modified Ricci flow on complete $\mathbb R^2$,, Rocky Mountain J. of Math., 33 (2003), 69.  doi: 10.1216/rmjm/1181069987.  Google Scholar

[4]

J. T. Chayes, S. J. Osher and J. V. Ralston, On singular diffusion equations with applications to self-organized criticality,, Comm. Pure Appl. Math., 46 (1993), 1363.  doi: 10.1002/cpa.3160461004.  Google Scholar

[5]

S. H. Davis, E. DiBenedetto and D. J. Diller, Some a priori estimates for a singular evolution equation arising in thin-film dynamics,, SIAM J. Math. Anal., 27 (1996), 638.  doi: 10.1137/0527035.  Google Scholar

[6]

P. Daskalopoulos and M. Del Pino, On nonlinear parabolic equations of very fast diffusion,, Arch. Rational Mech. Anal., 137 (1997), 363.   Google Scholar

[7]

P. Daskalopoulos and M. del Pino, On the Cauchy problem for $u_t=\Delta\log u$ in higher dimensions,, Math. Ann., 313 (1999), 189.  doi: 10.1007/s002080050257.  Google Scholar

[8]

P. Daskalopoulos and M. Del Pino, Nonradial solvability structure of super-diffusive nonlinear parabolic equations,, Trans. Amer. Math. Soc., 354 (2002), 1583.  doi: 10.1090/S0002-9947-01-02888-4.  Google Scholar

[9]

P. G. de Gennes, Wetting: Statics and dynamics,, Rev. Modern Phys., 57 (1985), 827.  doi: 10.1103/RevModPhys.57.827.  Google Scholar

[10]

E. DiBenedetto, "Degenerate Parabolic Equations,", Universitext, (1993).   Google Scholar

[11]

E. DiBenedetto and D. J. Diller, About a singular parabolic equation arising in thin film dynamics and in the Ricci flow for complete $\mathbb R^2$,, in, 177 (1996), 103.   Google Scholar

[12]

E. DiBenedetto, U. Gianazza and V. Vespri, Harnack type estimates and Hölder continuity for non-negative solutions to certain sub-critically singular parabolic partial differential equations,, Manuscripta Mathematica, 131 (2010), 231.  doi: 10.1007/s00229-009-0317-9.  Google Scholar

[13]

E. DiBenedetto, U. Gianazza and V. Vespri, "Harnack's Inequality for Degenerate and Singular Parabolic Equations,", Springer Monographs in Mathematics, (2012).   Google Scholar

[14]

J. R. Esteban, A. Rodríguez and J. L. Vázquez, A nonlinear heat equation with singular diffusivity,, Comm. Partial Differential Equations, 139 (1988), 985.  doi: 10.1080/03605308808820566.  Google Scholar

[15]

R. Hamilton, The Harnack estimate for the Ricci flow,, J. Differential Geom., 37 (1993), 225.   Google Scholar

[16]

K. M. Hui, Singular limit of solutions of the equation $u_t=\Delta\frac{u^m}m$ as $m\rightarrow0$,, Pacific J. Math., 187 (1999), 297.  doi: 10.2140/pjm.1999.187.297.  Google Scholar

[17]

K. M. Hui, Singular limit of solutions of the very fast diffusion equation,, Nonlinear Anal., 68 (2008), 1120.  doi: 10.1016/j.na.2006.12.009.  Google Scholar

[18]

H. P. McKean, The central limit theorem for Carleman's equation,, Israel J. Math., 21 (1975), 54.  doi: 10.1007/BF02757134.  Google Scholar

[19]

P. Rosenau, Fast and superfast diffusion processes,, Physical Rev. Lett., 74 (1995), 1056.  doi: 10.1103/PhysRevLett.74.1056.  Google Scholar

[20]

J. L. Vázquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type,, J. Math. Pures Appl. (9), 71 (1992), 503.   Google Scholar

[21]

J. L. Vázquez, Failure of the strong maxmum principle in nonlinear diffusion. Existence of needles,, Comm. Partial Differential Equations, 30 (2005), 1263.  doi: 10.1080/10623320500258759.  Google Scholar

[22]

M. B. Williams and S. H. Davis, Nonlinear theory of film rupture,, Jour. of Colloid and Interface Sc., 90 (1982), 220.  doi: 10.1016/0021-9797(82)90415-5.  Google Scholar

[23]

L.-F. Wu, The Ricci flow on complete $\mathbb R^2$,, Comm. in Anal. Geom., 1 (1993), 439.   Google Scholar

show all references

References:
[1]

M. Bonforte and J. L. Vázquez, Positivity, local smoothing and Harnack inequalities for very fast diffusion equations,, Adv. Math., 223 (2010), 529.  doi: 10.1016/j.aim.2009.08.021.  Google Scholar

[2]

J. P. Burelbach, S. G. Bankoff and S. H. Davis, Nonlinear stability of evaporating/condensing liquid films,, J. Fluid Mech., 195 (1988), 463.  doi: 10.1017/S0022112088002484.  Google Scholar

[3]

S.-C. Chang, S.-K. Hong and C.-T. Wu, The Harnack estimate for the modified Ricci flow on complete $\mathbb R^2$,, Rocky Mountain J. of Math., 33 (2003), 69.  doi: 10.1216/rmjm/1181069987.  Google Scholar

[4]

J. T. Chayes, S. J. Osher and J. V. Ralston, On singular diffusion equations with applications to self-organized criticality,, Comm. Pure Appl. Math., 46 (1993), 1363.  doi: 10.1002/cpa.3160461004.  Google Scholar

[5]

S. H. Davis, E. DiBenedetto and D. J. Diller, Some a priori estimates for a singular evolution equation arising in thin-film dynamics,, SIAM J. Math. Anal., 27 (1996), 638.  doi: 10.1137/0527035.  Google Scholar

[6]

P. Daskalopoulos and M. Del Pino, On nonlinear parabolic equations of very fast diffusion,, Arch. Rational Mech. Anal., 137 (1997), 363.   Google Scholar

[7]

P. Daskalopoulos and M. del Pino, On the Cauchy problem for $u_t=\Delta\log u$ in higher dimensions,, Math. Ann., 313 (1999), 189.  doi: 10.1007/s002080050257.  Google Scholar

[8]

P. Daskalopoulos and M. Del Pino, Nonradial solvability structure of super-diffusive nonlinear parabolic equations,, Trans. Amer. Math. Soc., 354 (2002), 1583.  doi: 10.1090/S0002-9947-01-02888-4.  Google Scholar

[9]

P. G. de Gennes, Wetting: Statics and dynamics,, Rev. Modern Phys., 57 (1985), 827.  doi: 10.1103/RevModPhys.57.827.  Google Scholar

[10]

E. DiBenedetto, "Degenerate Parabolic Equations,", Universitext, (1993).   Google Scholar

[11]

E. DiBenedetto and D. J. Diller, About a singular parabolic equation arising in thin film dynamics and in the Ricci flow for complete $\mathbb R^2$,, in, 177 (1996), 103.   Google Scholar

[12]

E. DiBenedetto, U. Gianazza and V. Vespri, Harnack type estimates and Hölder continuity for non-negative solutions to certain sub-critically singular parabolic partial differential equations,, Manuscripta Mathematica, 131 (2010), 231.  doi: 10.1007/s00229-009-0317-9.  Google Scholar

[13]

E. DiBenedetto, U. Gianazza and V. Vespri, "Harnack's Inequality for Degenerate and Singular Parabolic Equations,", Springer Monographs in Mathematics, (2012).   Google Scholar

[14]

J. R. Esteban, A. Rodríguez and J. L. Vázquez, A nonlinear heat equation with singular diffusivity,, Comm. Partial Differential Equations, 139 (1988), 985.  doi: 10.1080/03605308808820566.  Google Scholar

[15]

R. Hamilton, The Harnack estimate for the Ricci flow,, J. Differential Geom., 37 (1993), 225.   Google Scholar

[16]

K. M. Hui, Singular limit of solutions of the equation $u_t=\Delta\frac{u^m}m$ as $m\rightarrow0$,, Pacific J. Math., 187 (1999), 297.  doi: 10.2140/pjm.1999.187.297.  Google Scholar

[17]

K. M. Hui, Singular limit of solutions of the very fast diffusion equation,, Nonlinear Anal., 68 (2008), 1120.  doi: 10.1016/j.na.2006.12.009.  Google Scholar

[18]

H. P. McKean, The central limit theorem for Carleman's equation,, Israel J. Math., 21 (1975), 54.  doi: 10.1007/BF02757134.  Google Scholar

[19]

P. Rosenau, Fast and superfast diffusion processes,, Physical Rev. Lett., 74 (1995), 1056.  doi: 10.1103/PhysRevLett.74.1056.  Google Scholar

[20]

J. L. Vázquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type,, J. Math. Pures Appl. (9), 71 (1992), 503.   Google Scholar

[21]

J. L. Vázquez, Failure of the strong maxmum principle in nonlinear diffusion. Existence of needles,, Comm. Partial Differential Equations, 30 (2005), 1263.  doi: 10.1080/10623320500258759.  Google Scholar

[22]

M. B. Williams and S. H. Davis, Nonlinear theory of film rupture,, Jour. of Colloid and Interface Sc., 90 (1982), 220.  doi: 10.1016/0021-9797(82)90415-5.  Google Scholar

[23]

L.-F. Wu, The Ricci flow on complete $\mathbb R^2$,, Comm. in Anal. Geom., 1 (1993), 439.   Google Scholar

[1]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[2]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[3]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[4]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[5]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[6]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[7]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[8]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[9]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[10]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[11]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[14]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[15]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[16]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[17]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[18]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[19]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[20]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]