September  2012, 17(6): 1859-1887. doi: 10.3934/dcdsb.2012.17.1859

Infinite dimensional relaxation oscillation in aggregation-growth systems

1. 

Institute of Mathematics for Industry, Kyusyu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan

2. 

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan, Japan

Received  October 2011 Revised  January 2012 Published  May 2012

Two types of aggregation systems with Fisher-KPP growth are proposed. One is described by a normal reaction-diffusion system, and the other is described by a cross-diffusion system. If the growth effect is dominant, a spatially constant equilibrium solution is stable. When the growth effect becomes weaker and the aggregation effect become dominant, the solution is destabilized so that spatially non-constant equilibrium solutions, which exhibit Turing's patterns, appear. When the growth effect weakens further, the spatially non-constant equilibrium solutions are destabilized through Hopf bifurcation, so that oscillatory Turing's patterns appear. Finally, when the growth effect is extremely weak, there appear spatio-temporal periodic solutions exhibiting infinite dimensional relaxation oscillation.
Citation: Shin-Ichiro Ei, Hirofumi Izuhara, Masayasu Mimura. Infinite dimensional relaxation oscillation in aggregation-growth systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1859-1887. doi: 10.3934/dcdsb.2012.17.1859
References:
[1]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence,, J. Math. Biol., 51 (2005), 75.  doi: 10.1007/s00285-004-0313-3.  Google Scholar

[2]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. II. Biological invations and pulsating travelling fronts,, J. Math. Pures Appl. (9), 84 (2005), 1101.   Google Scholar

[3]

, E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman, B. Sandstede and X. Wang,, \emph{AUTO2000: Continuation and bifurcation software for ordinary differential equations (with HomCont)}., ().   Google Scholar

[4]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems,, J. Dynam. Differential Equations, 14 (2002), 85.  doi: 10.1023/A:1012980128575.  Google Scholar

[5]

S.-I. Ei and M. Mimura, Relaxation oscillations in combustion models of thermal self-ignition,, J. Dynam. Differential Equations, 4 (1992), 191.   Google Scholar

[6]

T. Funaki, H. Izuhara, M. Mimura and C. Urabe, A link between microscopic and macroscopic models of self-organized aggregation,, in preparetion., ().   Google Scholar

[7]

S. Ishii and Y. Kuwahara, An aggregation pheromone of the German cockroach Blattella germanica L (Orthoptera: Blattelidae),, Appl. Ent. Zool., 2 (1967), 203.   Google Scholar

[8]

M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction,, J. Math. Biol., 53 (2006), 617.  doi: 10.1007/s00285-006-0013-2.  Google Scholar

[9]

R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost and G. Theraulaz, Self-organized aggregation in cockroach,, Animal Behaviour, 69 (2005), 169.  doi: 10.1016/j.anbehav.2004.02.009.  Google Scholar

[10]

S. R. Kay and S. K. Scott, Oscillations of simple exothermic reaction in a closed system. II. Exact Arrhenius kinetics,, Proc. R. Soc. Lond. A, 416 (1988), 343.  doi: 10.1098/rspa.1988.0038.  Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[12]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.   Google Scholar

[13]

M. Mimura and T. Tsujikawa, Aggregation pattern dynamics in a chemotaxis model including growth,, Physica A, 230 (1996), 499.  doi: 10.1016/0378-4371(96)00051-9.  Google Scholar

[14]

H. Murakawa, A relation between cross-diffusion and reaction-diffusion,, Discrete Contin. Dyn. Syst. S, 5 (2012), 147.   Google Scholar

[15]

J. E. Pearson, Complex patterns in a simple system,, Science, 216 (1993), 189.  doi: 10.1126/science.261.5118.189.  Google Scholar

[16]

R. Schaaf, Stationary solutions of chemotaxis systems,, Trans. AMS, 292 (1985), 531.  doi: 10.1090/S0002-9947-1985-0808736-1.  Google Scholar

[17]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[18]

N. Shigesada, K. Kawasaki and E. Teramoto, Traveling periodic-waves in heterogeneous environments,, Theor. Popul. Biol., 30 (1986), 143.  doi: 10.1016/0040-5809(86)90029-8.  Google Scholar

[19]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.  doi: 10.1093/biomet/38.1-2.196.  Google Scholar

[20]

A. Turing, The chemical basis of morphogenesis,, Philosophical Transactions of the Royal Society of London Series B, 237 (1952), 37.  doi: 10.1098/rstb.1952.0012.  Google Scholar

show all references

References:
[1]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence,, J. Math. Biol., 51 (2005), 75.  doi: 10.1007/s00285-004-0313-3.  Google Scholar

[2]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. II. Biological invations and pulsating travelling fronts,, J. Math. Pures Appl. (9), 84 (2005), 1101.   Google Scholar

[3]

, E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman, B. Sandstede and X. Wang,, \emph{AUTO2000: Continuation and bifurcation software for ordinary differential equations (with HomCont)}., ().   Google Scholar

[4]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems,, J. Dynam. Differential Equations, 14 (2002), 85.  doi: 10.1023/A:1012980128575.  Google Scholar

[5]

S.-I. Ei and M. Mimura, Relaxation oscillations in combustion models of thermal self-ignition,, J. Dynam. Differential Equations, 4 (1992), 191.   Google Scholar

[6]

T. Funaki, H. Izuhara, M. Mimura and C. Urabe, A link between microscopic and macroscopic models of self-organized aggregation,, in preparetion., ().   Google Scholar

[7]

S. Ishii and Y. Kuwahara, An aggregation pheromone of the German cockroach Blattella germanica L (Orthoptera: Blattelidae),, Appl. Ent. Zool., 2 (1967), 203.   Google Scholar

[8]

M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction,, J. Math. Biol., 53 (2006), 617.  doi: 10.1007/s00285-006-0013-2.  Google Scholar

[9]

R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost and G. Theraulaz, Self-organized aggregation in cockroach,, Animal Behaviour, 69 (2005), 169.  doi: 10.1016/j.anbehav.2004.02.009.  Google Scholar

[10]

S. R. Kay and S. K. Scott, Oscillations of simple exothermic reaction in a closed system. II. Exact Arrhenius kinetics,, Proc. R. Soc. Lond. A, 416 (1988), 343.  doi: 10.1098/rspa.1988.0038.  Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[12]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.   Google Scholar

[13]

M. Mimura and T. Tsujikawa, Aggregation pattern dynamics in a chemotaxis model including growth,, Physica A, 230 (1996), 499.  doi: 10.1016/0378-4371(96)00051-9.  Google Scholar

[14]

H. Murakawa, A relation between cross-diffusion and reaction-diffusion,, Discrete Contin. Dyn. Syst. S, 5 (2012), 147.   Google Scholar

[15]

J. E. Pearson, Complex patterns in a simple system,, Science, 216 (1993), 189.  doi: 10.1126/science.261.5118.189.  Google Scholar

[16]

R. Schaaf, Stationary solutions of chemotaxis systems,, Trans. AMS, 292 (1985), 531.  doi: 10.1090/S0002-9947-1985-0808736-1.  Google Scholar

[17]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[18]

N. Shigesada, K. Kawasaki and E. Teramoto, Traveling periodic-waves in heterogeneous environments,, Theor. Popul. Biol., 30 (1986), 143.  doi: 10.1016/0040-5809(86)90029-8.  Google Scholar

[19]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.  doi: 10.1093/biomet/38.1-2.196.  Google Scholar

[20]

A. Turing, The chemical basis of morphogenesis,, Philosophical Transactions of the Royal Society of London Series B, 237 (1952), 37.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[1]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031

[2]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[3]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

[4]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[5]

Martin Baurmann, Wolfgang Ebenhöh, Ulrike Feudel. Turing instabilities and pattern formation in a benthic nutrient-microorganism system. Mathematical Biosciences & Engineering, 2004, 1 (1) : 111-130. doi: 10.3934/mbe.2004.1.111

[6]

Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597

[7]

H. Malchow, F.M. Hilker, S.V. Petrovskii. Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 705-711. doi: 10.3934/dcdsb.2004.4.705

[8]

Jian-Jun Xu, Junichiro Shimizu. Asymptotic theory for disc-like crystal growth (II): interfacial instability and pattern formation at early stage of growth. Communications on Pure & Applied Analysis, 2004, 3 (3) : 527-543. doi: 10.3934/cpaa.2004.3.527

[9]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

[10]

Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete & Continuous Dynamical Systems - S, 2020, 13 (1) : 47-66. doi: 10.3934/dcdss.2020003

[11]

Julien Cividini. Pattern formation in 2D traffic flows. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395

[12]

Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555

[13]

Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217

[14]

Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809

[15]

Taylan Sengul, Shouhong Wang. Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2609-2639. doi: 10.3934/cpaa.2014.13.2609

[16]

Freddy Dumortier, Robert Roussarie. Bifurcation of relaxation oscillations in dimension two. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 631-674. doi: 10.3934/dcds.2007.19.631

[17]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[18]

Guanqi Liu, Yuwen Wang. Pattern formation of a coupled two-cell Schnakenberg model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1051-1062. doi: 10.3934/dcdss.2017056

[19]

Hyung Ju Hwang, Thomas P. Witelski. Short-time pattern formation in thin film equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 867-885. doi: 10.3934/dcds.2009.23.867

[20]

Kolade M. Owolabi. Numerical analysis and pattern formation process for space-fractional superdiffusive systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 543-566. doi: 10.3934/dcdss.2019036

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (5)

[Back to Top]