\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Error estimates for a bar code reconstruction method

Abstract / Introduction Related Papers Cited by
  • We analyze a variational method for reconstructing a bar code signal from a blurry and noisy measurement. The bar code is modeled as a binary function with a finite number of transitions and a parameter controlling minimal feature size. The measured signal is the convolution of this binary function with a Gaussian kernel. In this work, we assume that the blur kernel is known and establish conditions (involving noise level and variance of the convolution kernel) under which the variational method considered recovers essentially the correct bar code.
    Mathematics Subject Classification: Primary: 68U10, 65R20, 65R32; Secondary: 49K40, 49N45, 49N60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Choksi and Y. van Gennip, Deblurring of one dimensional bar codes via total variation energy minimization, SIAM J. on Imaging Sciences, 3 (2010), 735-764.

    [2]

    R. Choksi, Y. van Gennip and A. Oberman, Anisotropic total variation regularized $L^1$ approximation and denoising/deblurring of 2D bar codes, Technical report, 2010.

    [3]

    G. Dal Maso, "An Introduction to Gamma Convergence,'' Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993.

    [4]

    S. Esedoglu, Blind deconvolution of bar code signals, Inverse Problems, 20 (2004), 121-135.doi: 10.1088/0266-5611/20/1/007.

    [5]

    L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,'' Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

    [6]

    E. Isaacson and H. B. Keller, "Analysis of Numerical Methods,'' Corrected reprint of the 1966 original [Wiley, New York; MR0201039], Dover Publications, Inc., New York, 1994.

    [7]

    L. Modica and S. Mortola, Un esempio di gamma-convergenza, Boll. Un. Mat. Ital. B (5), 14 (1977), 285-299.

    [8]

    L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.doi: 10.1016/0167-2789(92)90242-F.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(45) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return