September  2012, 17(6): 1939-1967. doi: 10.3934/dcdsb.2012.17.1939

On the structure of double layers in Poisson-Boltzmann equation

1. 

ICMAT (CSIC-UAM-UC3M-UCM), C/Nicolás Cabrera 15, Madrid, 28049

2. 

Instituto de Ciencias Matemáticas (CSIC - UAM - UC3M - UCM), C/Nicolás Cabrera, 13-15, Campus de Cantoblanco, 28049 Madrid, Spain

Received  May 2011 Revised  September 2011 Published  May 2012

We study the solutions to Poisson-Boltzmann equation for electrolytic solutions in a domain $\Omega$, surrounded by an uncharged dielectric medium. We establish existence, uniqueness and regularity of solutions and study in detail their asymptotic behaviour close to $\partial\Omega$ when a characteristic length, called the Debye length, is sufficiently small. This is a double layer with a thickness that changes from point to point along $\partial\Omega$ depending on the normal derivative of a harmonic function outside $\Omega$ and the mean curvature of $\partial\Omega$. We also provide numerical evidence of our results based on a finite elements approximation of the problem.
Citation: Marco A. Fontelos, Lucía B. Gamboa. On the structure of double layers in Poisson-Boltzmann equation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1939-1967. doi: 10.3934/dcdsb.2012.17.1939
References:
[1]

S. I. Betelú, M. A. Fontelos, U. Kindelán and O. Vantzos, Sigularities on charged drops, Phys. Fluids, 18 (2006), 051706.

[2]

D. Duft, T. Achtzehn, R. Müller, B. A. Huber and T. Leisner, Rayleigh jets from levitated microdroplets, Nature, 421 (2003), 128. doi: 10.1038/421128a.

[3]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.

[4]

J. Fernández de la Mora, The fluid dynamics of Taylor cones, Annual Review of Fluid Mechanics, 39 (2007), 217-243. doi: 10.1146/annurev.fluid.39.050905.110159.

[5]

M. A. Fontelos and A. Friedman, Symmetry-breaking bifurcations of charged drops, Arch. Ration. Mech. Anal., 172 (2004), 267-294. doi: 10.1007/s00205-003-0298-x.

[6]

M. A. Fontelos, U. Kindelán and O. Vantzos, Evolution of neutral and charged droplets in an electric field, Phys. Fluids, 20 (2008), 092110. doi: 10.1063/1.2980030.

[7]

A. Friedman and K. Tintarev, Boundary asymptotics for solutions of the Poisson-Boltzmann equation, J. Diff. Eq., 69 (1987), 15-38. doi: 10.1016/0022-0396(87)90100-8.

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[9]

J. H. Masliyah and S. Bhattacharjee, "Electrokinetic and Colloid Transport Phenomena," Wiley, 2006.

[10]

F. Mugele and J. C. Baret, Electrowetting: From basics to applications, J. Phys. Condens. Matter, 17 (2005), R705-R774. doi: 10.1088/0953-8984/17/28/R01.

[11]

C. Quillet and B. Berge, Electrowetting: A recent outbreak, Current Opinion in Colloid & Interface Science, 6 (2001), 34-39.

[12]

I. Rubinstein, "Electro-Diffusion of Ions," SIAM Studies in Applied Mathematics, 11, SIAM, Philadelphia, PA, 1990.

[13]

R. J. Ryham, Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electro-hydrodinamics,, preprint., (). 

[14]

D. A. Saville, Electrohydrodynamics: The Taylor-Melcher Leaky dielectric model, Annual Review of Fluid Mechanics, 29 (1997), 27-64. doi: 10.1146/annurev.fluid.29.1.27.

[15]

H. A. Stone, A. D. Stroock and A. Ajdari, Engineering flows in small devices: Microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech., 36 (2004), 381-411.

show all references

References:
[1]

S. I. Betelú, M. A. Fontelos, U. Kindelán and O. Vantzos, Sigularities on charged drops, Phys. Fluids, 18 (2006), 051706.

[2]

D. Duft, T. Achtzehn, R. Müller, B. A. Huber and T. Leisner, Rayleigh jets from levitated microdroplets, Nature, 421 (2003), 128. doi: 10.1038/421128a.

[3]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.

[4]

J. Fernández de la Mora, The fluid dynamics of Taylor cones, Annual Review of Fluid Mechanics, 39 (2007), 217-243. doi: 10.1146/annurev.fluid.39.050905.110159.

[5]

M. A. Fontelos and A. Friedman, Symmetry-breaking bifurcations of charged drops, Arch. Ration. Mech. Anal., 172 (2004), 267-294. doi: 10.1007/s00205-003-0298-x.

[6]

M. A. Fontelos, U. Kindelán and O. Vantzos, Evolution of neutral and charged droplets in an electric field, Phys. Fluids, 20 (2008), 092110. doi: 10.1063/1.2980030.

[7]

A. Friedman and K. Tintarev, Boundary asymptotics for solutions of the Poisson-Boltzmann equation, J. Diff. Eq., 69 (1987), 15-38. doi: 10.1016/0022-0396(87)90100-8.

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[9]

J. H. Masliyah and S. Bhattacharjee, "Electrokinetic and Colloid Transport Phenomena," Wiley, 2006.

[10]

F. Mugele and J. C. Baret, Electrowetting: From basics to applications, J. Phys. Condens. Matter, 17 (2005), R705-R774. doi: 10.1088/0953-8984/17/28/R01.

[11]

C. Quillet and B. Berge, Electrowetting: A recent outbreak, Current Opinion in Colloid & Interface Science, 6 (2001), 34-39.

[12]

I. Rubinstein, "Electro-Diffusion of Ions," SIAM Studies in Applied Mathematics, 11, SIAM, Philadelphia, PA, 1990.

[13]

R. J. Ryham, Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electro-hydrodinamics,, preprint., (). 

[14]

D. A. Saville, Electrohydrodynamics: The Taylor-Melcher Leaky dielectric model, Annual Review of Fluid Mechanics, 29 (1997), 27-64. doi: 10.1146/annurev.fluid.29.1.27.

[15]

H. A. Stone, A. D. Stroock and A. Ajdari, Engineering flows in small devices: Microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech., 36 (2004), 381-411.

[1]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[2]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[3]

Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter. Strong smoothing for the non-cutoff homogeneous Boltzmann equation for Maxwellian molecules with Debye-Yukawa type interaction. Kinetic and Related Models, 2017, 10 (4) : 901-924. doi: 10.3934/krm.2017036

[4]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[5]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[6]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems and Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[7]

Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

[8]

Yuanhong Wei, Xifeng Su. On a class of non-local elliptic equations with asymptotically linear term. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6287-6304. doi: 10.3934/dcds.2018154

[9]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic and Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[10]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[11]

Chiun-Chang Lee. Asymptotic analysis of charge conserving Poisson-Boltzmann equations with variable dielectric coefficients. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3251-3276. doi: 10.3934/dcds.2016.36.3251

[12]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[13]

Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475

[14]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[15]

Zhaoquan Xu, Chufen Wu. Spreading speeds for a class of non-local convolution differential equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4479-4492. doi: 10.3934/dcdsb.2020108

[16]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[17]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[18]

Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115

[19]

Yanan Li, Alexandre N. Carvalho, Tito L. M. Luna, Estefani M. Moreira. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5181-5196. doi: 10.3934/cpaa.2020232

[20]

Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]