September  2012, 17(6): 1939-1967. doi: 10.3934/dcdsb.2012.17.1939

On the structure of double layers in Poisson-Boltzmann equation

1. 

ICMAT (CSIC-UAM-UC3M-UCM), C/Nicolás Cabrera 15, Madrid, 28049

2. 

Instituto de Ciencias Matemáticas (CSIC - UAM - UC3M - UCM), C/Nicolás Cabrera, 13-15, Campus de Cantoblanco, 28049 Madrid, Spain

Received  May 2011 Revised  September 2011 Published  May 2012

We study the solutions to Poisson-Boltzmann equation for electrolytic solutions in a domain $\Omega$, surrounded by an uncharged dielectric medium. We establish existence, uniqueness and regularity of solutions and study in detail their asymptotic behaviour close to $\partial\Omega$ when a characteristic length, called the Debye length, is sufficiently small. This is a double layer with a thickness that changes from point to point along $\partial\Omega$ depending on the normal derivative of a harmonic function outside $\Omega$ and the mean curvature of $\partial\Omega$. We also provide numerical evidence of our results based on a finite elements approximation of the problem.
Citation: Marco A. Fontelos, Lucía B. Gamboa. On the structure of double layers in Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1939-1967. doi: 10.3934/dcdsb.2012.17.1939
References:
[1]

S. I. Betelú, M. A. Fontelos, U. Kindelán and O. Vantzos, Sigularities on charged drops,, Phys. Fluids, 18 (2006). Google Scholar

[2]

D. Duft, T. Achtzehn, R. Müller, B. A. Huber and T. Leisner, Rayleigh jets from levitated microdroplets,, Nature, 421 (2003). doi: 10.1038/421128a. Google Scholar

[3]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998). Google Scholar

[4]

J. Fernández de la Mora, The fluid dynamics of Taylor cones,, Annual Review of Fluid Mechanics, 39 (2007), 217. doi: 10.1146/annurev.fluid.39.050905.110159. Google Scholar

[5]

M. A. Fontelos and A. Friedman, Symmetry-breaking bifurcations of charged drops,, Arch. Ration. Mech. Anal., 172 (2004), 267. doi: 10.1007/s00205-003-0298-x. Google Scholar

[6]

M. A. Fontelos, U. Kindelán and O. Vantzos, Evolution of neutral and charged droplets in an electric field,, Phys. Fluids, 20 (2008). doi: 10.1063/1.2980030. Google Scholar

[7]

A. Friedman and K. Tintarev, Boundary asymptotics for solutions of the Poisson-Boltzmann equation,, J. Diff. Eq., 69 (1987), 15. doi: 10.1016/0022-0396(87)90100-8. Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998). Google Scholar

[9]

J. H. Masliyah and S. Bhattacharjee, "Electrokinetic and Colloid Transport Phenomena,", Wiley, (2006). Google Scholar

[10]

F. Mugele and J. C. Baret, Electrowetting: From basics to applications,, J. Phys. Condens. Matter, 17 (2005). doi: 10.1088/0953-8984/17/28/R01. Google Scholar

[11]

C. Quillet and B. Berge, Electrowetting: A recent outbreak,, Current Opinion in Colloid & Interface Science, 6 (2001), 34. Google Scholar

[12]

I. Rubinstein, "Electro-Diffusion of Ions,", SIAM Studies in Applied Mathematics, 11 (1990). Google Scholar

[13]

R. J. Ryham, Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electro-hydrodinamics,, preprint., (). Google Scholar

[14]

D. A. Saville, Electrohydrodynamics: The Taylor-Melcher Leaky dielectric model,, Annual Review of Fluid Mechanics, 29 (1997), 27. doi: 10.1146/annurev.fluid.29.1.27. Google Scholar

[15]

H. A. Stone, A. D. Stroock and A. Ajdari, Engineering flows in small devices: Microfluidics toward a lab-on-a-chip,, Annu. Rev. Fluid Mech., 36 (2004), 381. Google Scholar

show all references

References:
[1]

S. I. Betelú, M. A. Fontelos, U. Kindelán and O. Vantzos, Sigularities on charged drops,, Phys. Fluids, 18 (2006). Google Scholar

[2]

D. Duft, T. Achtzehn, R. Müller, B. A. Huber and T. Leisner, Rayleigh jets from levitated microdroplets,, Nature, 421 (2003). doi: 10.1038/421128a. Google Scholar

[3]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998). Google Scholar

[4]

J. Fernández de la Mora, The fluid dynamics of Taylor cones,, Annual Review of Fluid Mechanics, 39 (2007), 217. doi: 10.1146/annurev.fluid.39.050905.110159. Google Scholar

[5]

M. A. Fontelos and A. Friedman, Symmetry-breaking bifurcations of charged drops,, Arch. Ration. Mech. Anal., 172 (2004), 267. doi: 10.1007/s00205-003-0298-x. Google Scholar

[6]

M. A. Fontelos, U. Kindelán and O. Vantzos, Evolution of neutral and charged droplets in an electric field,, Phys. Fluids, 20 (2008). doi: 10.1063/1.2980030. Google Scholar

[7]

A. Friedman and K. Tintarev, Boundary asymptotics for solutions of the Poisson-Boltzmann equation,, J. Diff. Eq., 69 (1987), 15. doi: 10.1016/0022-0396(87)90100-8. Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998). Google Scholar

[9]

J. H. Masliyah and S. Bhattacharjee, "Electrokinetic and Colloid Transport Phenomena,", Wiley, (2006). Google Scholar

[10]

F. Mugele and J. C. Baret, Electrowetting: From basics to applications,, J. Phys. Condens. Matter, 17 (2005). doi: 10.1088/0953-8984/17/28/R01. Google Scholar

[11]

C. Quillet and B. Berge, Electrowetting: A recent outbreak,, Current Opinion in Colloid & Interface Science, 6 (2001), 34. Google Scholar

[12]

I. Rubinstein, "Electro-Diffusion of Ions,", SIAM Studies in Applied Mathematics, 11 (1990). Google Scholar

[13]

R. J. Ryham, Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electro-hydrodinamics,, preprint., (). Google Scholar

[14]

D. A. Saville, Electrohydrodynamics: The Taylor-Melcher Leaky dielectric model,, Annual Review of Fluid Mechanics, 29 (1997), 27. doi: 10.1146/annurev.fluid.29.1.27. Google Scholar

[15]

H. A. Stone, A. D. Stroock and A. Ajdari, Engineering flows in small devices: Microfluidics toward a lab-on-a-chip,, Annu. Rev. Fluid Mech., 36 (2004), 381. Google Scholar

[1]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[2]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[3]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[4]

Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter. Strong smoothing for the non-cutoff homogeneous Boltzmann equation for Maxwellian molecules with Debye-Yukawa type interaction. Kinetic & Related Models, 2017, 10 (4) : 901-924. doi: 10.3934/krm.2017036

[5]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[6]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[7]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[8]

Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

[9]

Yuanhong Wei, Xifeng Su. On a class of non-local elliptic equations with asymptotically linear term. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6287-6304. doi: 10.3934/dcds.2018154

[10]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[11]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[12]

Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475

[13]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[14]

Chiun-Chang Lee. Asymptotic analysis of charge conserving Poisson-Boltzmann equations with variable dielectric coefficients. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3251-3276. doi: 10.3934/dcds.2016.36.3251

[15]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[16]

Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115

[17]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[18]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[19]

Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055

[20]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]