\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the structure of double layers in Poisson-Boltzmann equation

Abstract Related Papers Cited by
  • We study the solutions to Poisson-Boltzmann equation for electrolytic solutions in a domain $\Omega$, surrounded by an uncharged dielectric medium. We establish existence, uniqueness and regularity of solutions and study in detail their asymptotic behaviour close to $\partial\Omega$ when a characteristic length, called the Debye length, is sufficiently small. This is a double layer with a thickness that changes from point to point along $\partial\Omega$ depending on the normal derivative of a harmonic function outside $\Omega$ and the mean curvature of $\partial\Omega$. We also provide numerical evidence of our results based on a finite elements approximation of the problem.
    Mathematics Subject Classification: Primary: 35Q35, 35J15; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. I. Betelú, M. A. Fontelos, U. Kindelán and O. Vantzos, Sigularities on charged drops, Phys. Fluids, 18 (2006), 051706.

    [2]

    D. Duft, T. Achtzehn, R. Müller, B. A. Huber and T. Leisner, Rayleigh jets from levitated microdroplets, Nature, 421 (2003), 128.doi: 10.1038/421128a.

    [3]

    L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.

    [4]

    J. Fernández de la Mora, The fluid dynamics of Taylor cones, Annual Review of Fluid Mechanics, 39 (2007), 217-243.doi: 10.1146/annurev.fluid.39.050905.110159.

    [5]

    M. A. Fontelos and A. Friedman, Symmetry-breaking bifurcations of charged drops, Arch. Ration. Mech. Anal., 172 (2004), 267-294.doi: 10.1007/s00205-003-0298-x.

    [6]

    M. A. Fontelos, U. Kindelán and O. Vantzos, Evolution of neutral and charged droplets in an electric field, Phys. Fluids, 20 (2008), 092110.doi: 10.1063/1.2980030.

    [7]

    A. Friedman and K. Tintarev, Boundary asymptotics for solutions of the Poisson-Boltzmann equation, J. Diff. Eq., 69 (1987), 15-38.doi: 10.1016/0022-0396(87)90100-8.

    [8]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

    [9]

    J. H. Masliyah and S. Bhattacharjee, "Electrokinetic and Colloid Transport Phenomena," Wiley, 2006.

    [10]

    F. Mugele and J. C. Baret, Electrowetting: From basics to applications, J. Phys. Condens. Matter, 17 (2005), R705-R774.doi: 10.1088/0953-8984/17/28/R01.

    [11]

    C. Quillet and B. Berge, Electrowetting: A recent outbreak, Current Opinion in Colloid & Interface Science, 6 (2001), 34-39.

    [12]

    I. Rubinstein, "Electro-Diffusion of Ions," SIAM Studies in Applied Mathematics, 11, SIAM, Philadelphia, PA, 1990.

    [13]

    R. J. RyhamExistence, uniqueness, regularity and long-term behavior for dissipative systems modeling electro-hydrodinamics, preprint.

    [14]

    D. A. Saville, Electrohydrodynamics: The Taylor-Melcher Leaky dielectric model, Annual Review of Fluid Mechanics, 29 (1997), 27-64.doi: 10.1146/annurev.fluid.29.1.27.

    [15]

    H. A. Stone, A. D. Stroock and A. Ajdari, Engineering flows in small devices: Microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech., 36 (2004), 381-411.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(112) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return