September  2012, 17(6): 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

A Monge-Ampère type fully nonlinear equation on Hermitian manifolds

1. 

Department of Mathematics, The Ohio State University, Columbus, OH 43210

2. 

Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, United States

Received  March 2012 Revised  March 2012 Published  May 2012

We study a fully nonlinear equation of complex Monge-Ampère type on Hermitian manifolds. We establish the a priori estimates for solutions of the equation up to the second order derivatives with the help of a subsolution.
Citation: Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991
References:
[1]

T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, (French), Bull. Sci. Math. (2), 102 (1978), 63.   Google Scholar

[2]

X. Chen, On the lower bound of the Mabuchi energy and its application,, Int. Math. Res. Notices, 2000 (): 607.   Google Scholar

[3]

X. Chen, A new parabolic flow in Kähler manifolds,, Comm. Anal. Geom., 12 (2004), 837.   Google Scholar

[4]

P. Cherrier, Équations de Monge-Ampère sur les variétés hermitiennes compactes,, Bull. Sci. Math. (2), 111 (1987), 343.   Google Scholar

[5]

S. K. Donaldson, Moment maps and diffeomorphisms. Sir Michael Atiyah: A great mathematician of the twentieth century,, Asian J. Math., 3 (1999), 1.   Google Scholar

[6]

H. Fang, M. Lai and X. Ma, On a class of fully nonlinear flows in Kähler geometry,, J. Reine Angew. Math., 653 (2011), 189.   Google Scholar

[7]

B. Guan and Q. Li, Complex Monge-Ampère equations and totally real submanifolds,, Adv. Math., 225 (2010), 1185.  doi: 10.1016/j.aim.2010.03.019.  Google Scholar

[8]

A. Hanani, Équations du type de Monge-Ampère sur les variétés hermitiennes compactes, (French) [Monge-Ampère equations on compact Hermitian manifolds],, J. Funct. Anal., 137 (1996), 49.  doi: 10.1006/jfan.1996.0040.  Google Scholar

[9]

A. Hanani, Une généralisation de l'équation de Monge-Ampère sur les variétés hermitiennes compactes, (French) [A generalization of the Monge-Ampère equation on compact Hermitian manifolds],, Bull. Sci. Math., 120 (1996), 215.   Google Scholar

[10]

J. Song and B. Weinkove, On the convergence and singularities of the J-flow with applications to the Mabuchi energy,, Comm. Pure Appl. Math., 61 (2008), 210.  doi: 10.1002/cpa.20182.  Google Scholar

[11]

V. Tosatti and B. Weinkove, Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds,, Asian J. Math., 14 (2010), 19.   Google Scholar

[12]

V. Tosatti and B. Weinkove, The complex Monge-Ampère equation on compact Hermitian manifolds,, J. Amer. Math. Soc., 23 (2010), 1187.  doi: 10.1090/S0894-0347-2010-00673-X.  Google Scholar

[13]

B. Weinkove, Convergence of the J-flow on Kähler surfaces,, Comm. Anal. Geom., 12 (2004), 949.   Google Scholar

[14]

B. Weinkove, On the J-flow in higher dimensions and the lower boundedness of the Mabuchi energy,, J. Differential Geom., 73 (2006), 351.   Google Scholar

[15]

S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I,, Comm. Pure Appl. Math., 31 (1978), 339.  doi: 10.1002/cpa.3160310304.  Google Scholar

[16]

X. Zhang, A priori estimate for complex Monge-Ampère equation on Hermitian manifolds,, Int. Math. Res. Notices, 2010 (): 3814.   Google Scholar

show all references

References:
[1]

T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, (French), Bull. Sci. Math. (2), 102 (1978), 63.   Google Scholar

[2]

X. Chen, On the lower bound of the Mabuchi energy and its application,, Int. Math. Res. Notices, 2000 (): 607.   Google Scholar

[3]

X. Chen, A new parabolic flow in Kähler manifolds,, Comm. Anal. Geom., 12 (2004), 837.   Google Scholar

[4]

P. Cherrier, Équations de Monge-Ampère sur les variétés hermitiennes compactes,, Bull. Sci. Math. (2), 111 (1987), 343.   Google Scholar

[5]

S. K. Donaldson, Moment maps and diffeomorphisms. Sir Michael Atiyah: A great mathematician of the twentieth century,, Asian J. Math., 3 (1999), 1.   Google Scholar

[6]

H. Fang, M. Lai and X. Ma, On a class of fully nonlinear flows in Kähler geometry,, J. Reine Angew. Math., 653 (2011), 189.   Google Scholar

[7]

B. Guan and Q. Li, Complex Monge-Ampère equations and totally real submanifolds,, Adv. Math., 225 (2010), 1185.  doi: 10.1016/j.aim.2010.03.019.  Google Scholar

[8]

A. Hanani, Équations du type de Monge-Ampère sur les variétés hermitiennes compactes, (French) [Monge-Ampère equations on compact Hermitian manifolds],, J. Funct. Anal., 137 (1996), 49.  doi: 10.1006/jfan.1996.0040.  Google Scholar

[9]

A. Hanani, Une généralisation de l'équation de Monge-Ampère sur les variétés hermitiennes compactes, (French) [A generalization of the Monge-Ampère equation on compact Hermitian manifolds],, Bull. Sci. Math., 120 (1996), 215.   Google Scholar

[10]

J. Song and B. Weinkove, On the convergence and singularities of the J-flow with applications to the Mabuchi energy,, Comm. Pure Appl. Math., 61 (2008), 210.  doi: 10.1002/cpa.20182.  Google Scholar

[11]

V. Tosatti and B. Weinkove, Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds,, Asian J. Math., 14 (2010), 19.   Google Scholar

[12]

V. Tosatti and B. Weinkove, The complex Monge-Ampère equation on compact Hermitian manifolds,, J. Amer. Math. Soc., 23 (2010), 1187.  doi: 10.1090/S0894-0347-2010-00673-X.  Google Scholar

[13]

B. Weinkove, Convergence of the J-flow on Kähler surfaces,, Comm. Anal. Geom., 12 (2004), 949.   Google Scholar

[14]

B. Weinkove, On the J-flow in higher dimensions and the lower boundedness of the Mabuchi energy,, J. Differential Geom., 73 (2006), 351.   Google Scholar

[15]

S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I,, Comm. Pure Appl. Math., 31 (1978), 339.  doi: 10.1002/cpa.3160310304.  Google Scholar

[16]

X. Zhang, A priori estimate for complex Monge-Ampère equation on Hermitian manifolds,, Int. Math. Res. Notices, 2010 (): 3814.   Google Scholar

[1]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, 2021, 20 (2) : 915-931. doi: 10.3934/cpaa.2020297

[2]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[3]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[6]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[7]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[10]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[11]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[14]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[15]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[16]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[19]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[20]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]