September  2012, 17(6): 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

A Monge-Ampère type fully nonlinear equation on Hermitian manifolds

1. 

Department of Mathematics, The Ohio State University, Columbus, OH 43210

2. 

Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, United States

Received  March 2012 Revised  March 2012 Published  May 2012

We study a fully nonlinear equation of complex Monge-Ampère type on Hermitian manifolds. We establish the a priori estimates for solutions of the equation up to the second order derivatives with the help of a subsolution.
Citation: Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991
References:
[1]

T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, (French), Bull. Sci. Math. (2), 102 (1978), 63.   Google Scholar

[2]

X. Chen, On the lower bound of the Mabuchi energy and its application,, Int. Math. Res. Notices, 2000 (): 607.   Google Scholar

[3]

X. Chen, A new parabolic flow in Kähler manifolds,, Comm. Anal. Geom., 12 (2004), 837.   Google Scholar

[4]

P. Cherrier, Équations de Monge-Ampère sur les variétés hermitiennes compactes,, Bull. Sci. Math. (2), 111 (1987), 343.   Google Scholar

[5]

S. K. Donaldson, Moment maps and diffeomorphisms. Sir Michael Atiyah: A great mathematician of the twentieth century,, Asian J. Math., 3 (1999), 1.   Google Scholar

[6]

H. Fang, M. Lai and X. Ma, On a class of fully nonlinear flows in Kähler geometry,, J. Reine Angew. Math., 653 (2011), 189.   Google Scholar

[7]

B. Guan and Q. Li, Complex Monge-Ampère equations and totally real submanifolds,, Adv. Math., 225 (2010), 1185.  doi: 10.1016/j.aim.2010.03.019.  Google Scholar

[8]

A. Hanani, Équations du type de Monge-Ampère sur les variétés hermitiennes compactes, (French) [Monge-Ampère equations on compact Hermitian manifolds],, J. Funct. Anal., 137 (1996), 49.  doi: 10.1006/jfan.1996.0040.  Google Scholar

[9]

A. Hanani, Une généralisation de l'équation de Monge-Ampère sur les variétés hermitiennes compactes, (French) [A generalization of the Monge-Ampère equation on compact Hermitian manifolds],, Bull. Sci. Math., 120 (1996), 215.   Google Scholar

[10]

J. Song and B. Weinkove, On the convergence and singularities of the J-flow with applications to the Mabuchi energy,, Comm. Pure Appl. Math., 61 (2008), 210.  doi: 10.1002/cpa.20182.  Google Scholar

[11]

V. Tosatti and B. Weinkove, Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds,, Asian J. Math., 14 (2010), 19.   Google Scholar

[12]

V. Tosatti and B. Weinkove, The complex Monge-Ampère equation on compact Hermitian manifolds,, J. Amer. Math. Soc., 23 (2010), 1187.  doi: 10.1090/S0894-0347-2010-00673-X.  Google Scholar

[13]

B. Weinkove, Convergence of the J-flow on Kähler surfaces,, Comm. Anal. Geom., 12 (2004), 949.   Google Scholar

[14]

B. Weinkove, On the J-flow in higher dimensions and the lower boundedness of the Mabuchi energy,, J. Differential Geom., 73 (2006), 351.   Google Scholar

[15]

S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I,, Comm. Pure Appl. Math., 31 (1978), 339.  doi: 10.1002/cpa.3160310304.  Google Scholar

[16]

X. Zhang, A priori estimate for complex Monge-Ampère equation on Hermitian manifolds,, Int. Math. Res. Notices, 2010 (): 3814.   Google Scholar

show all references

References:
[1]

T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, (French), Bull. Sci. Math. (2), 102 (1978), 63.   Google Scholar

[2]

X. Chen, On the lower bound of the Mabuchi energy and its application,, Int. Math. Res. Notices, 2000 (): 607.   Google Scholar

[3]

X. Chen, A new parabolic flow in Kähler manifolds,, Comm. Anal. Geom., 12 (2004), 837.   Google Scholar

[4]

P. Cherrier, Équations de Monge-Ampère sur les variétés hermitiennes compactes,, Bull. Sci. Math. (2), 111 (1987), 343.   Google Scholar

[5]

S. K. Donaldson, Moment maps and diffeomorphisms. Sir Michael Atiyah: A great mathematician of the twentieth century,, Asian J. Math., 3 (1999), 1.   Google Scholar

[6]

H. Fang, M. Lai and X. Ma, On a class of fully nonlinear flows in Kähler geometry,, J. Reine Angew. Math., 653 (2011), 189.   Google Scholar

[7]

B. Guan and Q. Li, Complex Monge-Ampère equations and totally real submanifolds,, Adv. Math., 225 (2010), 1185.  doi: 10.1016/j.aim.2010.03.019.  Google Scholar

[8]

A. Hanani, Équations du type de Monge-Ampère sur les variétés hermitiennes compactes, (French) [Monge-Ampère equations on compact Hermitian manifolds],, J. Funct. Anal., 137 (1996), 49.  doi: 10.1006/jfan.1996.0040.  Google Scholar

[9]

A. Hanani, Une généralisation de l'équation de Monge-Ampère sur les variétés hermitiennes compactes, (French) [A generalization of the Monge-Ampère equation on compact Hermitian manifolds],, Bull. Sci. Math., 120 (1996), 215.   Google Scholar

[10]

J. Song and B. Weinkove, On the convergence and singularities of the J-flow with applications to the Mabuchi energy,, Comm. Pure Appl. Math., 61 (2008), 210.  doi: 10.1002/cpa.20182.  Google Scholar

[11]

V. Tosatti and B. Weinkove, Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds,, Asian J. Math., 14 (2010), 19.   Google Scholar

[12]

V. Tosatti and B. Weinkove, The complex Monge-Ampère equation on compact Hermitian manifolds,, J. Amer. Math. Soc., 23 (2010), 1187.  doi: 10.1090/S0894-0347-2010-00673-X.  Google Scholar

[13]

B. Weinkove, Convergence of the J-flow on Kähler surfaces,, Comm. Anal. Geom., 12 (2004), 949.   Google Scholar

[14]

B. Weinkove, On the J-flow in higher dimensions and the lower boundedness of the Mabuchi energy,, J. Differential Geom., 73 (2006), 351.   Google Scholar

[15]

S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I,, Comm. Pure Appl. Math., 31 (1978), 339.  doi: 10.1002/cpa.3160310304.  Google Scholar

[16]

X. Zhang, A priori estimate for complex Monge-Ampère equation on Hermitian manifolds,, Int. Math. Res. Notices, 2010 (): 3814.   Google Scholar

[1]

Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121

[2]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[3]

Fan Cui, Huaiyu Jian. Symmetry of solutions to a class of Monge-Ampère equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1247-1259. doi: 10.3934/cpaa.2019060

[4]

Limei Dai, Hongyu Li. Entire subsolutions of Monge-Ampère type equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 19-30. doi: 10.3934/cpaa.2020002

[5]

Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061

[6]

Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59

[7]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[8]

Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705

[9]

Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069

[10]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[11]

Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559

[12]

Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations & Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015

[13]

Wei Sun. On uniform estimate of complex elliptic equations on closed Hermitian manifolds. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1553-1570. doi: 10.3934/cpaa.2017074

[14]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[15]

Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053

[16]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[17]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[18]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[19]

Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539

[20]

Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]