-
Previous Article
A fully non-linear PDE problem from pricing CDS with counterparty risk
- DCDS-B Home
- This Issue
-
Next Article
Gap junctions and excitation patterns in continuum models of islets
A Monge-Ampère type fully nonlinear equation on Hermitian manifolds
1. | Department of Mathematics, The Ohio State University, Columbus, OH 43210 |
2. | Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, United States |
References:
[1] |
T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, (French) Bull. Sci. Math. (2), 102 (1978), 63-95. |
[2] |
X. Chen, On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Notices, 2000, 607-623. |
[3] |
X. Chen, A new parabolic flow in Kähler manifolds, Comm. Anal. Geom., 12 (2004), 837-852. |
[4] |
P. Cherrier, Équations de Monge-Ampère sur les variétés hermitiennes compactes, Bull. Sci. Math. (2), 111 (1987), 343-385. |
[5] |
S. K. Donaldson, Moment maps and diffeomorphisms. Sir Michael Atiyah: A great mathematician of the twentieth century, Asian J. Math., 3 (1999), 1-15. |
[6] |
H. Fang, M. Lai and X. Ma, On a class of fully nonlinear flows in Kähler geometry, J. Reine Angew. Math., 653 (2011), 189-220. |
[7] |
B. Guan and Q. Li, Complex Monge-Ampère equations and totally real submanifolds, Adv. Math., 225 (2010), 1185-1223.
doi: 10.1016/j.aim.2010.03.019. |
[8] |
A. Hanani, Équations du type de Monge-Ampère sur les variétés hermitiennes compactes, (French) [Monge-Ampère equations on compact Hermitian manifolds], J. Funct. Anal., 137 (1996), 49-75.
doi: 10.1006/jfan.1996.0040. |
[9] |
A. Hanani, Une généralisation de l'équation de Monge-Ampère sur les variétés hermitiennes compactes, (French) [A generalization of the Monge-Ampère equation on compact Hermitian manifolds], Bull. Sci. Math., 120 (1996), 215-252. |
[10] |
J. Song and B. Weinkove, On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math., 61 (2008), 210-229.
doi: 10.1002/cpa.20182. |
[11] |
V. Tosatti and B. Weinkove, Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds, Asian J. Math., 14 (2010), 19-40. |
[12] |
V. Tosatti and B. Weinkove, The complex Monge-Ampère equation on compact Hermitian manifolds, J. Amer. Math. Soc., 23 (2010), 1187-1195.
doi: 10.1090/S0894-0347-2010-00673-X. |
[13] |
B. Weinkove, Convergence of the J-flow on Kähler surfaces, Comm. Anal. Geom., 12 (2004), 949-965. |
[14] |
B. Weinkove, On the J-flow in higher dimensions and the lower boundedness of the Mabuchi energy, J. Differential Geom., 73 (2006), 351-358. |
[15] |
S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., 31 (1978), 339-411.
doi: 10.1002/cpa.3160310304. |
[16] |
X. Zhang, A priori estimate for complex Monge-Ampère equation on Hermitian manifolds, Int. Math. Res. Notices, 2010, 3814-3836. |
show all references
References:
[1] |
T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, (French) Bull. Sci. Math. (2), 102 (1978), 63-95. |
[2] |
X. Chen, On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Notices, 2000, 607-623. |
[3] |
X. Chen, A new parabolic flow in Kähler manifolds, Comm. Anal. Geom., 12 (2004), 837-852. |
[4] |
P. Cherrier, Équations de Monge-Ampère sur les variétés hermitiennes compactes, Bull. Sci. Math. (2), 111 (1987), 343-385. |
[5] |
S. K. Donaldson, Moment maps and diffeomorphisms. Sir Michael Atiyah: A great mathematician of the twentieth century, Asian J. Math., 3 (1999), 1-15. |
[6] |
H. Fang, M. Lai and X. Ma, On a class of fully nonlinear flows in Kähler geometry, J. Reine Angew. Math., 653 (2011), 189-220. |
[7] |
B. Guan and Q. Li, Complex Monge-Ampère equations and totally real submanifolds, Adv. Math., 225 (2010), 1185-1223.
doi: 10.1016/j.aim.2010.03.019. |
[8] |
A. Hanani, Équations du type de Monge-Ampère sur les variétés hermitiennes compactes, (French) [Monge-Ampère equations on compact Hermitian manifolds], J. Funct. Anal., 137 (1996), 49-75.
doi: 10.1006/jfan.1996.0040. |
[9] |
A. Hanani, Une généralisation de l'équation de Monge-Ampère sur les variétés hermitiennes compactes, (French) [A generalization of the Monge-Ampère equation on compact Hermitian manifolds], Bull. Sci. Math., 120 (1996), 215-252. |
[10] |
J. Song and B. Weinkove, On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math., 61 (2008), 210-229.
doi: 10.1002/cpa.20182. |
[11] |
V. Tosatti and B. Weinkove, Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds, Asian J. Math., 14 (2010), 19-40. |
[12] |
V. Tosatti and B. Weinkove, The complex Monge-Ampère equation on compact Hermitian manifolds, J. Amer. Math. Soc., 23 (2010), 1187-1195.
doi: 10.1090/S0894-0347-2010-00673-X. |
[13] |
B. Weinkove, Convergence of the J-flow on Kähler surfaces, Comm. Anal. Geom., 12 (2004), 949-965. |
[14] |
B. Weinkove, On the J-flow in higher dimensions and the lower boundedness of the Mabuchi energy, J. Differential Geom., 73 (2006), 351-358. |
[15] |
S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., 31 (1978), 339-411.
doi: 10.1002/cpa.3160310304. |
[16] |
X. Zhang, A priori estimate for complex Monge-Ampère equation on Hermitian manifolds, Int. Math. Res. Notices, 2010, 3814-3836. |
[1] |
Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121 |
[2] |
Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825 |
[3] |
Limei Dai, Hongyu Li. Entire subsolutions of Monge-Ampère type equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 19-30. doi: 10.3934/cpaa.2020002 |
[4] |
Fan Cui, Huaiyu Jian. Symmetry of solutions to a class of Monge-Ampère equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1247-1259. doi: 10.3934/cpaa.2019060 |
[5] |
Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure and Applied Analysis, 2021, 20 (2) : 915-931. doi: 10.3934/cpaa.2020297 |
[6] |
Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061 |
[7] |
Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267 |
[8] |
Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure and Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59 |
[9] |
Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347 |
[10] |
Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705 |
[11] |
Ziwei Zhou, Jiguang Bao, Bo Wang. A Liouville theorem of parabolic Monge-AmpÈre equations in half-space. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1561-1578. doi: 10.3934/dcds.2020331 |
[12] |
Nam Q. Le. Optimal boundary regularity for some singular Monge-Ampère equations on bounded convex domains. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2199-2214. doi: 10.3934/dcds.2021188 |
[13] |
Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069 |
[14] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2619-2633. doi: 10.3934/dcds.2020377 |
[15] |
Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058 |
[16] |
Yahui Niu. Monotonicity of solutions for a class of nonlocal Monge-Ampère problem. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5269-5283. doi: 10.3934/cpaa.2020237 |
[17] |
Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations and Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015 |
[18] |
Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559 |
[19] |
Wei Sun. On uniform estimate of complex elliptic equations on closed Hermitian manifolds. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1553-1570. doi: 10.3934/cpaa.2017074 |
[20] |
Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]