Advanced Search
Article Contents
Article Contents

A Monge-Ampère type fully nonlinear equation on Hermitian manifolds

Abstract Related Papers Cited by
  • We study a fully nonlinear equation of complex Monge-Ampère type on Hermitian manifolds. We establish the a priori estimates for solutions of the equation up to the second order derivatives with the help of a subsolution.
    Mathematics Subject Classification: 58J05, 58J32, 32W20, 35J25, 53C55.


    \begin{equation} \\ \end{equation}
  • [1]

    T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, (French) Bull. Sci. Math. (2), 102 (1978), 63-95.


    X. ChenOn the lower bound of the Mabuchi energy and its application, Int. Math. Res. Notices, 2000, 607-623.


    X. Chen, A new parabolic flow in Kähler manifolds, Comm. Anal. Geom., 12 (2004), 837-852.


    P. Cherrier, Équations de Monge-Ampère sur les variétés hermitiennes compactes, Bull. Sci. Math. (2), 111 (1987), 343-385.


    S. K. Donaldson, Moment maps and diffeomorphisms. Sir Michael Atiyah: A great mathematician of the twentieth century, Asian J. Math., 3 (1999), 1-15.


    H. Fang, M. Lai and X. Ma, On a class of fully nonlinear flows in Kähler geometry, J. Reine Angew. Math., 653 (2011), 189-220.


    B. Guan and Q. Li, Complex Monge-Ampère equations and totally real submanifolds, Adv. Math., 225 (2010), 1185-1223.doi: 10.1016/j.aim.2010.03.019.


    A. Hanani, Équations du type de Monge-Ampère sur les variétés hermitiennes compactes, (French) [Monge-Ampère equations on compact Hermitian manifolds], J. Funct. Anal., 137 (1996), 49-75.doi: 10.1006/jfan.1996.0040.


    A. Hanani, Une généralisation de l'équation de Monge-Ampère sur les variétés hermitiennes compactes, (French) [A generalization of the Monge-Ampère equation on compact Hermitian manifolds], Bull. Sci. Math., 120 (1996), 215-252.


    J. Song and B. Weinkove, On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math., 61 (2008), 210-229.doi: 10.1002/cpa.20182.


    V. Tosatti and B. Weinkove, Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds, Asian J. Math., 14 (2010), 19-40.


    V. Tosatti and B. Weinkove, The complex Monge-Ampère equation on compact Hermitian manifolds, J. Amer. Math. Soc., 23 (2010), 1187-1195.doi: 10.1090/S0894-0347-2010-00673-X.


    B. Weinkove, Convergence of the J-flow on Kähler surfaces, Comm. Anal. Geom., 12 (2004), 949-965.


    B. Weinkove, On the J-flow in higher dimensions and the lower boundedness of the Mabuchi energy, J. Differential Geom., 73 (2006), 351-358.


    S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., 31 (1978), 339-411.doi: 10.1002/cpa.3160310304.


    X. ZhangA priori estimate for complex Monge-Ampère equation on Hermitian manifolds, Int. Math. Res. Notices, 2010, 3814-3836.

  • 加载中

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint