• Previous Article
    The regularized implied local volatility equations -A new model to recover the volatility of underlying asset from observed market option price
  • DCDS-B Home
  • This Issue
  • Next Article
    A Monge-Ampère type fully nonlinear equation on Hermitian manifolds
September  2012, 17(6): 2001-2016. doi: 10.3934/dcdsb.2012.17.2001

A fully non-linear PDE problem from pricing CDS with counterparty risk

1. 

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556

2. 

Department of Mathematics, Tongji University, Shanghai 200092, China, China, China

Received  July 2011 Revised  September 2011 Published  May 2012

In this study, we establish a financial credit derivative pricing model for a contract which is subject to counterparty risks. The model leads to a fully nonlinear partial differential equation problem. We study this PDE problem and obtained a solution as the limit of a sequence of semi-linear PDE problems which also arise from financial models. Moreover, the problems and methods build a bridge between two main risk frameworks: structure and intensity models. We obtain the uniqueness, regularities and some properties of the solution of this problem.
Citation: Bei Hu, Lishang Jiang, Jin Liang, Wei Wei. A fully non-linear PDE problem from pricing CDS with counterparty risk. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2001-2016. doi: 10.3934/dcdsb.2012.17.2001
References:
[1]

F. Black and J. Cox, Valuing corporate securities: Some effects of bond indenture provisions,, Journal of Finance, 31 (1976), 351.  doi: 10.1111/j.1540-6261.1976.tb01891.x.  Google Scholar

[2]

T. Bielecki and M. Rutkowski, "Credit Risk: Modeling, Valuation and Hedging,", Springer Finance, (2002).   Google Scholar

[3]

S. Crepey, M. Jeanblanc and B. Zargari, Counterparty risk on a CDS in a Markov Chain Copula model with joint defaults,, working paper, (2009).   Google Scholar

[4]

J. Cox, J. Ingersoll and S. Ross, A Theory of the term structure of interest rates,, Econometrica, 53 (1985), 385.  doi: 10.2307/1911242.  Google Scholar

[5]

D. Duffie and K. J. Singleton, Modeling term structures of defaultable bonds,, Review of Financial Studies, 12 (1999), 687.  doi: 10.1093/rfs/12.4.687.  Google Scholar

[6]

B. Øksendal, "Stochastic Differential Equations. An Introduction with Applications,", fifth edition, (1998).   Google Scholar

[7]

A. Friedman, "Variational Principles and Free Boundary Problems,", Second edition, (1988).   Google Scholar

[8]

D. Lando, On Cox processes and credit risky securities,, Review of Derivatives Research, 2 (1998), 99.   Google Scholar

[9]

F. Longstaff and E. Schwartz, A simple approach to valuing risky fixed and floating rate debt,, Journal of Finance, 50 (1995), 789.  doi: 10.2307/2329288.  Google Scholar

[10]

R. Merton, On the valuing of corporate debt: The risk structure of interest rates,, Journal of Finance, 29 (1974), 449.  doi: 10.1111/j.1540-6261.1974.tb03058.x.  Google Scholar

show all references

References:
[1]

F. Black and J. Cox, Valuing corporate securities: Some effects of bond indenture provisions,, Journal of Finance, 31 (1976), 351.  doi: 10.1111/j.1540-6261.1976.tb01891.x.  Google Scholar

[2]

T. Bielecki and M. Rutkowski, "Credit Risk: Modeling, Valuation and Hedging,", Springer Finance, (2002).   Google Scholar

[3]

S. Crepey, M. Jeanblanc and B. Zargari, Counterparty risk on a CDS in a Markov Chain Copula model with joint defaults,, working paper, (2009).   Google Scholar

[4]

J. Cox, J. Ingersoll and S. Ross, A Theory of the term structure of interest rates,, Econometrica, 53 (1985), 385.  doi: 10.2307/1911242.  Google Scholar

[5]

D. Duffie and K. J. Singleton, Modeling term structures of defaultable bonds,, Review of Financial Studies, 12 (1999), 687.  doi: 10.1093/rfs/12.4.687.  Google Scholar

[6]

B. Øksendal, "Stochastic Differential Equations. An Introduction with Applications,", fifth edition, (1998).   Google Scholar

[7]

A. Friedman, "Variational Principles and Free Boundary Problems,", Second edition, (1988).   Google Scholar

[8]

D. Lando, On Cox processes and credit risky securities,, Review of Derivatives Research, 2 (1998), 99.   Google Scholar

[9]

F. Longstaff and E. Schwartz, A simple approach to valuing risky fixed and floating rate debt,, Journal of Finance, 50 (1995), 789.  doi: 10.2307/2329288.  Google Scholar

[10]

R. Merton, On the valuing of corporate debt: The risk structure of interest rates,, Journal of Finance, 29 (1974), 449.  doi: 10.1111/j.1540-6261.1974.tb03058.x.  Google Scholar

[1]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[2]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[3]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[4]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[5]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[6]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[7]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[8]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[9]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[10]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[11]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[12]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[13]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[14]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[15]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[16]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[17]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[18]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[19]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[20]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]