Advanced Search
Article Contents
Article Contents

Evolution of mixed dispersal in periodic environments

Abstract Related Papers Cited by
  • Random dispersal describes the movement of organisms between adjacent spatial locations. However, the movement of some organisms such as seeds of plants can occur between non-adjacent spatial locations and is thus non-local. We propose to study a mixed dispersal strategy, which is a combination of random dispersal and non-local dispersal. More specifically, we assume that a fraction of individuals in the population adopt random dispersal, while the remaining fraction assumes non-local dispersal. We investigate how such mixed dispersal affects the invasion of a single species and also how mixed dispersal strategy will evolve in spatially heterogeneous but temporally constant environment.
    Mathematics Subject Classification: Primary: 35K57; Secondary: 45K05, 47G20, 92D25.


    \begin{equation} \\ \end{equation}
  • [1]

    R. S. Cantrell and C. Cosner, "Spatial Ecology via Reaction-Diffusion Equations," Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, UK, 2003.


    E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl. (9), 86 (2006), 271-291.


    J. Clobert, E. Danchin, A. Dhondt and J. Nichols, eds., "Dispersal," Oxford University Press, Oxford, 2001.


    C. Cortázar, J. Coville, M. Elgueta and S. Martinez, A nonlocal inhomogeneous dispersal process, J. Differential Equations, 241 (2007), 332-358.doi: 10.1016/j.jde.2007.06.002.


    C. Cortázar, M. Elgueta, J. García-Melián and S. Martínez, Existence and asymptotic behavior of solutions to some inhomogeneous nonlocal diffusion problems, SIAM J. Math. Anal., 41 (2009), 2136-2164.doi: 10.1137/090751682.


    C. Cosner, J. Dávila and S. Martínez, Evolutionary stability of ideal free nonlocal dispersal, J. Biological Dynamics, 6 (2012), 395-405.


    R. Cousens, C. Dytham and R. Law, "Dispersal in Plants: A Population Perspective," Oxford University Press, Oxford, 2008.


    J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.doi: 10.1016/j.jde.2010.07.003.


    J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.doi: 10.1016/j.jde.2007.11.002.


    J. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal., 39 (2008), 1693-1709.doi: 10.1137/060676854.


    J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.doi: 10.1007/s002850050120.


    W. Fagan and F. Lutscher, Average dispersal success: Linking home range, dispersal, and metapopulation dynamics to reserve design, Ecol. Appl., 16 (2006), 820-828.


    B. Gustafsson, H.-O. Kreiss and J. Oliger, "Time-Dependent Problems and Difference Methods," Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1995.


    I. Hanski, "Metapopulation Ecology," Oxford Univ. Press, Oxford, 1999.


    A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theor. Pop. Biol., 24 (1983), 244-251.doi: 10.1016/0040-5809(83)90027-8.


    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Math., 840, Springer-Verlag, Berlin-New York, 1981.


    G. Hetzer, W. Shen and A. ZhangEffects of spatial variations and dispersal strategies on principal eigenvalues of dispersal operators and spreading speeds of monostable equations, Rocky Mountain Journal of Mathematics, to appear.


    G. Hetzer, T. Nguyen and W. ShenCoexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal, Comm. Pure Appl. Anal., to appear.


    V. Hutson and M. Grinfeld, Non-local dispersal and bistability, Euro. J. Appl. Math., 17 (2006), 221-232.doi: 10.1017/S0956792506006462.


    V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.doi: 10.1007/s00285-003-0210-1.


    V. Hutson, W. Shen and G. T. Vickers, Spectral theory for nonlocal dispersal with periodic or almost-periodic time dependence, Rocky Mountain Journal of Mathematics, 38 (2008), 1147-1175.doi: 10.1216/RMJ-2008-38-4-1147.


    Y. Jin and M. A. Lewis, Seasonal influences on population spread and persistence in streams: Critical domain size, SIAM J. Appl. Math., 71 (2011), 1241-1262.doi: 10.1137/100788033.


    C.-Y. Kao, Y. Lou and W. Shen, Random dispersal vs. non-local dispersal, Disc. Cont. Dynam. Sys. Series A, 26 (2010), 551-596.


    R. W. van Kirk and M. A. Lewis, Integrodifference models for persistence in fragmented habitats, Bulletin of Mathematical Biology, 59 (2007), 107-138.doi: 10.1007/BF02459473.


    R. W. van Kirk and M. A. Lewis, Edgepermeability and population persistence in isolated habitat patches, Natural Resources Modeling, 12 (2009), 37-64.


    C. T. Lee, M. F. Hoopes, J. Diehl, W. Gilliland, G. Huxel, E. V. Leaver, K. McCain, J. Umbanhowar and A. Mogilner, Non-local concepts and models in biology, J. Theor. Biol., 210 (2001), 201-219.doi: 10.1006/jtbi.2000.2287.


    R. B. Lehoucq, D. C. Sorensen and C. Yang, "ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods," SIAM Publications, Philadelphia, 1998.


    S. A. Levin, H. C. Muller-Landau, R. Nathan and J. Chave, The ecology and evolution of seed dispersal: A theoretical perspective, Annu. Rev. Eco. Evol. Syst., 34 (2003), 575-604.doi: 10.1146/annurev.ecolsys.34.011802.132428.


    W.-T. Li, Y.-J. Sun and Z.-C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.doi: 10.1016/j.nonrwa.2009.07.005.


    G. Lindfield and J. Penny, "Numerical Methods Using MATLAB," Prentice Hall, New Jersey, 2000.


    F. Lutscher, Nonlocal dispersal and averaging in heterogeneous landscapes, Applicable Analysis, 89 (2010), 1091-1108.doi: 10.1080/00036811003735816.


    F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Appl. Math., 65 (2005), 1305-1327.doi: 10.1137/S0036139904440400.


    T. Nagylaki, Clines with partial panmixia, Theor. Popul. Biol., 81 (2012), 45-68.doi: 10.1016/j.tpb.2011.09.006.


    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.


    W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249 (2010), 747-795.doi: 10.1016/j.jde.2010.04.012.


    W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitat, Proc. Amer. Math. Soc., 140 (2012), 1681-1696.doi: 10.1090/S0002-9939-2011-11011-6.


    N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice," Oxford University Press, 1997.


    J. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.doi: 10.1093/biomet/38.1-2.196.

  • 加载中

Article Metrics

HTML views() PDF downloads(126) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint