\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Evolution of mixed dispersal in periodic environments

Abstract Related Papers Cited by
  • Random dispersal describes the movement of organisms between adjacent spatial locations. However, the movement of some organisms such as seeds of plants can occur between non-adjacent spatial locations and is thus non-local. We propose to study a mixed dispersal strategy, which is a combination of random dispersal and non-local dispersal. More specifically, we assume that a fraction of individuals in the population adopt random dispersal, while the remaining fraction assumes non-local dispersal. We investigate how such mixed dispersal affects the invasion of a single species and also how mixed dispersal strategy will evolve in spatially heterogeneous but temporally constant environment.
    Mathematics Subject Classification: Primary: 35K57; Secondary: 45K05, 47G20, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. S. Cantrell and C. Cosner, "Spatial Ecology via Reaction-Diffusion Equations," Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, UK, 2003.

    [2]

    E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl. (9), 86 (2006), 271-291.

    [3]

    J. Clobert, E. Danchin, A. Dhondt and J. Nichols, eds., "Dispersal," Oxford University Press, Oxford, 2001.

    [4]

    C. Cortázar, J. Coville, M. Elgueta and S. Martinez, A nonlocal inhomogeneous dispersal process, J. Differential Equations, 241 (2007), 332-358.doi: 10.1016/j.jde.2007.06.002.

    [5]

    C. Cortázar, M. Elgueta, J. García-Melián and S. Martínez, Existence and asymptotic behavior of solutions to some inhomogeneous nonlocal diffusion problems, SIAM J. Math. Anal., 41 (2009), 2136-2164.doi: 10.1137/090751682.

    [6]

    C. Cosner, J. Dávila and S. Martínez, Evolutionary stability of ideal free nonlocal dispersal, J. Biological Dynamics, 6 (2012), 395-405.

    [7]

    R. Cousens, C. Dytham and R. Law, "Dispersal in Plants: A Population Perspective," Oxford University Press, Oxford, 2008.

    [8]

    J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.doi: 10.1016/j.jde.2010.07.003.

    [9]

    J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.doi: 10.1016/j.jde.2007.11.002.

    [10]

    J. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal., 39 (2008), 1693-1709.doi: 10.1137/060676854.

    [11]

    J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.doi: 10.1007/s002850050120.

    [12]

    W. Fagan and F. Lutscher, Average dispersal success: Linking home range, dispersal, and metapopulation dynamics to reserve design, Ecol. Appl., 16 (2006), 820-828.

    [13]

    B. Gustafsson, H.-O. Kreiss and J. Oliger, "Time-Dependent Problems and Difference Methods," Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1995.

    [14]

    I. Hanski, "Metapopulation Ecology," Oxford Univ. Press, Oxford, 1999.

    [15]

    A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theor. Pop. Biol., 24 (1983), 244-251.doi: 10.1016/0040-5809(83)90027-8.

    [16]

    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Math., 840, Springer-Verlag, Berlin-New York, 1981.

    [17]

    G. Hetzer, W. Shen and A. ZhangEffects of spatial variations and dispersal strategies on principal eigenvalues of dispersal operators and spreading speeds of monostable equations, Rocky Mountain Journal of Mathematics, to appear.

    [18]

    G. Hetzer, T. Nguyen and W. ShenCoexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal, Comm. Pure Appl. Anal., to appear.

    [19]

    V. Hutson and M. Grinfeld, Non-local dispersal and bistability, Euro. J. Appl. Math., 17 (2006), 221-232.doi: 10.1017/S0956792506006462.

    [20]

    V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.doi: 10.1007/s00285-003-0210-1.

    [21]

    V. Hutson, W. Shen and G. T. Vickers, Spectral theory for nonlocal dispersal with periodic or almost-periodic time dependence, Rocky Mountain Journal of Mathematics, 38 (2008), 1147-1175.doi: 10.1216/RMJ-2008-38-4-1147.

    [22]

    Y. Jin and M. A. Lewis, Seasonal influences on population spread and persistence in streams: Critical domain size, SIAM J. Appl. Math., 71 (2011), 1241-1262.doi: 10.1137/100788033.

    [23]

    C.-Y. Kao, Y. Lou and W. Shen, Random dispersal vs. non-local dispersal, Disc. Cont. Dynam. Sys. Series A, 26 (2010), 551-596.

    [24]

    R. W. van Kirk and M. A. Lewis, Integrodifference models for persistence in fragmented habitats, Bulletin of Mathematical Biology, 59 (2007), 107-138.doi: 10.1007/BF02459473.

    [25]

    R. W. van Kirk and M. A. Lewis, Edgepermeability and population persistence in isolated habitat patches, Natural Resources Modeling, 12 (2009), 37-64.

    [26]

    C. T. Lee, M. F. Hoopes, J. Diehl, W. Gilliland, G. Huxel, E. V. Leaver, K. McCain, J. Umbanhowar and A. Mogilner, Non-local concepts and models in biology, J. Theor. Biol., 210 (2001), 201-219.doi: 10.1006/jtbi.2000.2287.

    [27]

    R. B. Lehoucq, D. C. Sorensen and C. Yang, "ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods," SIAM Publications, Philadelphia, 1998.

    [28]

    S. A. Levin, H. C. Muller-Landau, R. Nathan and J. Chave, The ecology and evolution of seed dispersal: A theoretical perspective, Annu. Rev. Eco. Evol. Syst., 34 (2003), 575-604.doi: 10.1146/annurev.ecolsys.34.011802.132428.

    [29]

    W.-T. Li, Y.-J. Sun and Z.-C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.doi: 10.1016/j.nonrwa.2009.07.005.

    [30]

    G. Lindfield and J. Penny, "Numerical Methods Using MATLAB," Prentice Hall, New Jersey, 2000.

    [31]

    F. Lutscher, Nonlocal dispersal and averaging in heterogeneous landscapes, Applicable Analysis, 89 (2010), 1091-1108.doi: 10.1080/00036811003735816.

    [32]

    F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Appl. Math., 65 (2005), 1305-1327.doi: 10.1137/S0036139904440400.

    [33]

    T. Nagylaki, Clines with partial panmixia, Theor. Popul. Biol., 81 (2012), 45-68.doi: 10.1016/j.tpb.2011.09.006.

    [34]

    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.

    [35]

    W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249 (2010), 747-795.doi: 10.1016/j.jde.2010.04.012.

    [36]

    W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitat, Proc. Amer. Math. Soc., 140 (2012), 1681-1696.doi: 10.1090/S0002-9939-2011-11011-6.

    [37]

    N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice," Oxford University Press, 1997.

    [38]

    J. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.doi: 10.1093/biomet/38.1-2.196.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(126) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return