September  2012, 17(6): 2073-2090. doi: 10.3934/dcdsb.2012.17.2073

Some $L_{p}$-estimates for elliptic and parabolic operators with measurable coefficients

1. 

127 Vincent Hall, University of Minnesota, Minneapolis, MN 55455, United States

Received  May 2011 Revised  January 2012 Published  May 2012

We consider linear elliptic and parabolic equations with measurable coefficients and prove two types of $L_{p}$-estimates for their solutions, which were recently used in the theory of fully nonlinear elliptic and parabolic second order equations in [1]. The first type is an estimate of the $\gamma$th norm of the second-order derivatives, where $\gamma\in(0,1)$, and the second type deals with estimates of the resolvent operators in $L_{p}$ when the first-order coefficients are summable to an appropriate power.
Citation: N. V. Krylov. Some $L_{p}$-estimates for elliptic and parabolic operators with measurable coefficients. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2073-2090. doi: 10.3934/dcdsb.2012.17.2073
References:
[1]

Hongjie Dong, N. V. Krylov and Xu Li, On fully nonlinear elliptic and parabolic equations in domains with VMO coefficients, Algebra i Analiz, Vol. 24 (2012), No. 1, 54-95.

[2]

N. V. Krylov, On Itô's stochastic integral equations, (Russian), Teoriya Veroyatnostei i eye Primeneniya, 14 (1969), 340-348; English translation in Theor. Probability Appl., 14 (1969), 330-336.

[3]

N. V. Krylov, Certain estimates in the theory of stochastic integrals, (Russian), Teoriya Veroyatnostei i eye Primeneniya, 18 (1973), 56-65; English translation in Theor. Probability Appl., 18 (1973), 54-63.

[4]

N. V. Krylov, Some estimates for the density of the distrinbution of a stochastic integral, (Russian), Izvestiya Akademii Nauk SSSR, seriya matematicheskaya, 38 (1974), 228-248; English translation in Math. USSR Izvestija, 8 (1974), 233-254.

[5]

N. V. Krylov, "Controlled Diffusion Processes,'' (Russian), Nauka, Moscow, 1977; English translation, Applications of Mathematics, 14, Springer-Verlag, New York-Berlin, 1980.

[6]

N. V. Krylov, "Nelineĭnye Éllipticheskie i Parabolicheskie Uravneniya Vtorogo Poryadka,'' (Russian) [Second-Order Nonlinear Elliptic and Parabolic Equations], "Nauka," Moscow, 1985; English translation, Reidel, Dordrecht, 1987, MR0901759.

[7]

N. V. Krylov, "Lectures on Elliptic and Parabolic Equations in Sobolev Spaces," Graduate Studies in Mathematics, 96, Amer. Math. Soc., Providence, RI, 2008.

[8]

N. V. Krylov, On Bellman's equations with VMO coefficients, Methods and Applications of Analysis, 17 (2010), 105-121.

[9]

Fang-Hua Lin, Second derivative $L^p$-estimates for elliptic equations of nondivergent type, Proc. Amer. Math. Soc., 96 (1986), 447-451. doi: 10.2307/2046592.

[10]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, "Lineĭnye i Kvazilineĭnye Uravneniya Parabolicheskogo Tipa,'' (Russian) [Linear and Quasi-Linear Equations of Parabolic Type], "Nauka," Moscow, 1968; English translation, Amer. Math. Soc., Providence, RI, 1968.

[11]

G. M. Lieberman, "Second Order Parabolic Differential Equations," World Scientific Publishing Co., Inc., River Edge, NJ, 1996.

show all references

References:
[1]

Hongjie Dong, N. V. Krylov and Xu Li, On fully nonlinear elliptic and parabolic equations in domains with VMO coefficients, Algebra i Analiz, Vol. 24 (2012), No. 1, 54-95.

[2]

N. V. Krylov, On Itô's stochastic integral equations, (Russian), Teoriya Veroyatnostei i eye Primeneniya, 14 (1969), 340-348; English translation in Theor. Probability Appl., 14 (1969), 330-336.

[3]

N. V. Krylov, Certain estimates in the theory of stochastic integrals, (Russian), Teoriya Veroyatnostei i eye Primeneniya, 18 (1973), 56-65; English translation in Theor. Probability Appl., 18 (1973), 54-63.

[4]

N. V. Krylov, Some estimates for the density of the distrinbution of a stochastic integral, (Russian), Izvestiya Akademii Nauk SSSR, seriya matematicheskaya, 38 (1974), 228-248; English translation in Math. USSR Izvestija, 8 (1974), 233-254.

[5]

N. V. Krylov, "Controlled Diffusion Processes,'' (Russian), Nauka, Moscow, 1977; English translation, Applications of Mathematics, 14, Springer-Verlag, New York-Berlin, 1980.

[6]

N. V. Krylov, "Nelineĭnye Éllipticheskie i Parabolicheskie Uravneniya Vtorogo Poryadka,'' (Russian) [Second-Order Nonlinear Elliptic and Parabolic Equations], "Nauka," Moscow, 1985; English translation, Reidel, Dordrecht, 1987, MR0901759.

[7]

N. V. Krylov, "Lectures on Elliptic and Parabolic Equations in Sobolev Spaces," Graduate Studies in Mathematics, 96, Amer. Math. Soc., Providence, RI, 2008.

[8]

N. V. Krylov, On Bellman's equations with VMO coefficients, Methods and Applications of Analysis, 17 (2010), 105-121.

[9]

Fang-Hua Lin, Second derivative $L^p$-estimates for elliptic equations of nondivergent type, Proc. Amer. Math. Soc., 96 (1986), 447-451. doi: 10.2307/2046592.

[10]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, "Lineĭnye i Kvazilineĭnye Uravneniya Parabolicheskogo Tipa,'' (Russian) [Linear and Quasi-Linear Equations of Parabolic Type], "Nauka," Moscow, 1968; English translation, Amer. Math. Soc., Providence, RI, 1968.

[11]

G. M. Lieberman, "Second Order Parabolic Differential Equations," World Scientific Publishing Co., Inc., River Edge, NJ, 1996.

[1]

Junjie Zhang, Shenzhou Zheng, Haiyan Yu. $ L^{p(\cdot)} $-regularity of Hessian for nondivergence parabolic and elliptic equations with measurable coefficients. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2777-2796. doi: 10.3934/cpaa.2020121

[2]

Ugur G. Abdulla. Regularity of $\infty$ for elliptic equations with measurable coefficients and its consequences. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3379-3397. doi: 10.3934/dcds.2012.32.3379

[3]

Doyoon Kim, Kyeong-Hun Kim, Kijung Lee. Parabolic Systems with measurable coefficients in weighted Sobolev spaces. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022062

[4]

Ciprian G. Gal, Mahamadi Warma. Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evolution Equations and Control Theory, 2016, 5 (1) : 61-103. doi: 10.3934/eect.2016.5.61

[5]

Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011

[6]

Luigi Greco, Gioconda Moscariello, Teresa Radice. Nondivergence elliptic equations with unbounded coefficients. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 131-143. doi: 10.3934/dcdsb.2009.11.131

[7]

Gui-Qiang Chen, Kenneth Hvistendahl Karlsen. Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients. Communications on Pure and Applied Analysis, 2005, 4 (2) : 241-266. doi: 10.3934/cpaa.2005.4.241

[8]

Giorgio Metafune, Chiara Spina, Cristian Tacelli. On a class of elliptic operators with unbounded diffusion coefficients. Evolution Equations and Control Theory, 2014, 3 (4) : 671-680. doi: 10.3934/eect.2014.3.671

[9]

Kenneth Kuttler. Measurable solutions for elliptic and evolution inclusions. Evolution Equations and Control Theory, 2020, 9 (4) : 1041-1055. doi: 10.3934/eect.2020041

[10]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[11]

Luisa Moschini, Guillermo Reyes, Alberto Tesei. Nonuniqueness of solutions to semilinear parabolic equations with singular coefficients. Communications on Pure and Applied Analysis, 2006, 5 (1) : 155-179. doi: 10.3934/cpaa.2006.5.155

[12]

N. V. Krylov. Uniqueness for Lp-viscosity solutions for uniformly parabolic Isaacs equations with measurable lower order terms. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2495-2516. doi: 10.3934/cpaa.2018119

[13]

Fuzhi Li, Yangrong Li, Renhai Wang. Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3663-3685. doi: 10.3934/dcds.2018158

[14]

Giorgio Metafune, Chiara Spina. Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2285-2299. doi: 10.3934/dcds.2012.32.2285

[15]

Dong Sun, V. S. Manoranjan, Hong-Ming Yin. Numerical solutions for a coupled parabolic equations arising induction heating processes. Conference Publications, 2007, 2007 (Special) : 956-964. doi: 10.3934/proc.2007.2007.956

[16]

Pierre-A. Vuillermot. On the time evolution of Bernstein processes associated with a class of parabolic equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1073-1090. doi: 10.3934/dcdsb.2018142

[17]

Wael Bahsoun, Paweł Góra. SRB measures for certain Markov processes. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 17-37. doi: 10.3934/dcds.2011.30.17

[18]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[19]

Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781

[20]

Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 177-189. doi: 10.3934/dcdss.2014.7.177

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (155)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]