September  2012, 17(6): 2171-2184. doi: 10.3934/dcdsb.2012.17.2171

Dynamics of a two-receptor binding model: How affinities and capacities translate into long and short time behaviour and physiological corollaries

1. 

Mathematical Institute, Leiden University, PB 9512, 2300 RA Leiden, Netherlands

2. 

Advanced Modeling & Simulation; Clinical Pharmacology, Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340 Beerse, Belgium, Belgium

Received  July 2011 Revised  February 2012 Published  May 2012

In this paper we present a mathematical analysis of a model involving target-mediated drug disposition involving two targets, developed to fit a series of data sets. The two targets are receptors with very different characteristics: one has high affinity to the drug, a small capacity and a short half-life, whilst the other receptor has low affinity to the drug, high capacity and its half-life is large. The analysis of this model yields a qualitative and quantitative understanding of the dynamics of this two-receptor model and in particular identifies different time scales over which the amounts of free drug and drug-receptor complexes vary. Thus it yields analytical tools to make long-term predictions on the basis of medium term data sets.
Citation: Lambertus A. Peletier, Willem de Winter, An Vermeulen. Dynamics of a two-receptor binding model: How affinities and capacities translate into long and short time behaviour and physiological corollaries. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2171-2184. doi: 10.3934/dcdsb.2012.17.2171
References:
[1]

L. Gibiansky, E. Gibiansky, T. Kakkar and P. Ma, Approximations of the target-mediated drug disposition model and identifying of model parameters,, J. Pharmacokinetics Phamacodynamics, 35 (2008), 573.  doi: 10.1007/s10928-008-9102-8.  Google Scholar

[2]

L. Gibiansky and E. Gibiansky, Target-mediated drug disposition model for drugs that bind to more than one target,, J. Pharmacokinetics Phamacodynamics, 37 (2010), 323.  doi: 10.1007/s10928-010-9163-3.  Google Scholar

[3]

D. Mager and W. J. Jusko, General pharmacokinetic model for drugs exhibiting target-mediated drug disposition,, J. Pharmacokinetics and Phamacodynamics, 28 (2001), 507.  doi: 10.1023/A:1014414520282.  Google Scholar

[4]

D. Mager and W. Krzyzanski, Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition,, Pharm. Research, 22 (2005), 1589.  doi: 10.1007/s11095-005-6650-0.  Google Scholar

[5]

L. Michaelis and M. L. Menten, Die Kinetik der Invertinwirkung,, Biochem. Z., 49 (1913), 333.   Google Scholar

[6]

L. A. Peletier and J. Gabrielsson, Dynamics of target-mediated drug disposition,, European Journal of Pharmaceutical Sciences, 38 (2009), 445.  doi: 10.1016/j.ejps.2009.09.007.  Google Scholar

[7]

L. A. Peletier, N. Benson and P. H. van der Graaf, Impact of plasma-protein binding on receptor occupancy: An analytical description,, J. Theor. Biology, 256 (2009), 253.  doi: 10.1016/j.jtbi.2008.09.014.  Google Scholar

[8]

E. Snoeck, Ph. Jacqmin, A. van Peer and M. Danhof, A combined specific target site binding and pharmacokinetic model to explore the non-linear disposition of draflazine,, J. Pharmacokinetics and Biopharmaceutics, 27 (1999), 257.  doi: 10.1023/A:1020943029130.  Google Scholar

[9]

L. A. Segel, On the validity of the steady state assumption of enzyme kinetics,, Bull. Math. Biol., 50 (1988), 579.  doi: 10.1016/S0092-8240(88)80057-0.  Google Scholar

[10]

L. A. Segel and M. Slemrod, The quasi-steady state assumption: A case study in perturbation,, SIAM Review, 31 (1989), 446.  doi: 10.1137/1031091.  Google Scholar

[11]

Y. Sugiyama and M. Hanano, Receptor-mediated transport of peptide hormones and its importance in the overall hormone disposition in the body,, Pharm. Research {\bf 6} (1989), 6 (1989), 192.   Google Scholar

show all references

References:
[1]

L. Gibiansky, E. Gibiansky, T. Kakkar and P. Ma, Approximations of the target-mediated drug disposition model and identifying of model parameters,, J. Pharmacokinetics Phamacodynamics, 35 (2008), 573.  doi: 10.1007/s10928-008-9102-8.  Google Scholar

[2]

L. Gibiansky and E. Gibiansky, Target-mediated drug disposition model for drugs that bind to more than one target,, J. Pharmacokinetics Phamacodynamics, 37 (2010), 323.  doi: 10.1007/s10928-010-9163-3.  Google Scholar

[3]

D. Mager and W. J. Jusko, General pharmacokinetic model for drugs exhibiting target-mediated drug disposition,, J. Pharmacokinetics and Phamacodynamics, 28 (2001), 507.  doi: 10.1023/A:1014414520282.  Google Scholar

[4]

D. Mager and W. Krzyzanski, Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition,, Pharm. Research, 22 (2005), 1589.  doi: 10.1007/s11095-005-6650-0.  Google Scholar

[5]

L. Michaelis and M. L. Menten, Die Kinetik der Invertinwirkung,, Biochem. Z., 49 (1913), 333.   Google Scholar

[6]

L. A. Peletier and J. Gabrielsson, Dynamics of target-mediated drug disposition,, European Journal of Pharmaceutical Sciences, 38 (2009), 445.  doi: 10.1016/j.ejps.2009.09.007.  Google Scholar

[7]

L. A. Peletier, N. Benson and P. H. van der Graaf, Impact of plasma-protein binding on receptor occupancy: An analytical description,, J. Theor. Biology, 256 (2009), 253.  doi: 10.1016/j.jtbi.2008.09.014.  Google Scholar

[8]

E. Snoeck, Ph. Jacqmin, A. van Peer and M. Danhof, A combined specific target site binding and pharmacokinetic model to explore the non-linear disposition of draflazine,, J. Pharmacokinetics and Biopharmaceutics, 27 (1999), 257.  doi: 10.1023/A:1020943029130.  Google Scholar

[9]

L. A. Segel, On the validity of the steady state assumption of enzyme kinetics,, Bull. Math. Biol., 50 (1988), 579.  doi: 10.1016/S0092-8240(88)80057-0.  Google Scholar

[10]

L. A. Segel and M. Slemrod, The quasi-steady state assumption: A case study in perturbation,, SIAM Review, 31 (1989), 446.  doi: 10.1137/1031091.  Google Scholar

[11]

Y. Sugiyama and M. Hanano, Receptor-mediated transport of peptide hormones and its importance in the overall hormone disposition in the body,, Pharm. Research {\bf 6} (1989), 6 (1989), 192.   Google Scholar

[1]

Lambertus A. Peletier. Modeling drug-protein dynamics. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 191-207. doi: 10.3934/dcdss.2012.5.191

[2]

Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807

[3]

Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025

[4]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[5]

Chris Guiver. The generalised singular perturbation approximation for bounded real and positive real control systems. Mathematical Control & Related Fields, 2019, 9 (2) : 313-350. doi: 10.3934/mcrf.2019016

[6]

Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 289-299. doi: 10.3934/naco.2017019

[7]

D. Warren, K Najarian. Learning theory applied to Sigmoid network classification of protein biological function using primary protein structure. Conference Publications, 2003, 2003 (Special) : 898-904. doi: 10.3934/proc.2003.2003.898

[8]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[9]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[10]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897

[11]

Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175

[12]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks & Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009

[13]

Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623

[14]

Krešimir Burazin, Marko Vrdoljak. Homogenisation theory for Friedrichs systems. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1017-1044. doi: 10.3934/cpaa.2014.13.1017

[15]

Leonor Cruzeiro. The VES hypothesis and protein misfolding. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1033-1046. doi: 10.3934/dcdss.2011.4.1033

[16]

Manuel Delgado, Cristian Morales-Rodrigo, Antonio Suárez. Anti-angiogenic therapy based on the binding to receptors. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3871-3894. doi: 10.3934/dcds.2012.32.3871

[17]

Shalela Mohd--Mahali, Song Wang, Xia Lou, Sungging Pintowantoro. Numerical methods for estimating effective diffusion coefficients of three-dimensional drug delivery systems. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 377-393. doi: 10.3934/naco.2012.2.377

[18]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[19]

Oleg Makarenkov, Paolo Nistri. On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes. Communications on Pure & Applied Analysis, 2008, 7 (1) : 49-61. doi: 10.3934/cpaa.2008.7.49

[20]

Marina Ghisi, Massimo Gobbino. Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1313-1332. doi: 10.3934/cpaa.2009.8.1313

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (3)

[Back to Top]