September  2012, 17(6): 2171-2184. doi: 10.3934/dcdsb.2012.17.2171

Dynamics of a two-receptor binding model: How affinities and capacities translate into long and short time behaviour and physiological corollaries

1. 

Mathematical Institute, Leiden University, PB 9512, 2300 RA Leiden, Netherlands

2. 

Advanced Modeling & Simulation; Clinical Pharmacology, Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340 Beerse, Belgium, Belgium

Received  July 2011 Revised  February 2012 Published  May 2012

In this paper we present a mathematical analysis of a model involving target-mediated drug disposition involving two targets, developed to fit a series of data sets. The two targets are receptors with very different characteristics: one has high affinity to the drug, a small capacity and a short half-life, whilst the other receptor has low affinity to the drug, high capacity and its half-life is large. The analysis of this model yields a qualitative and quantitative understanding of the dynamics of this two-receptor model and in particular identifies different time scales over which the amounts of free drug and drug-receptor complexes vary. Thus it yields analytical tools to make long-term predictions on the basis of medium term data sets.
Citation: Lambertus A. Peletier, Willem de Winter, An Vermeulen. Dynamics of a two-receptor binding model: How affinities and capacities translate into long and short time behaviour and physiological corollaries. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2171-2184. doi: 10.3934/dcdsb.2012.17.2171
References:
[1]

L. Gibiansky, E. Gibiansky, T. Kakkar and P. Ma, Approximations of the target-mediated drug disposition model and identifying of model parameters,, J. Pharmacokinetics Phamacodynamics, 35 (2008), 573.  doi: 10.1007/s10928-008-9102-8.  Google Scholar

[2]

L. Gibiansky and E. Gibiansky, Target-mediated drug disposition model for drugs that bind to more than one target,, J. Pharmacokinetics Phamacodynamics, 37 (2010), 323.  doi: 10.1007/s10928-010-9163-3.  Google Scholar

[3]

D. Mager and W. J. Jusko, General pharmacokinetic model for drugs exhibiting target-mediated drug disposition,, J. Pharmacokinetics and Phamacodynamics, 28 (2001), 507.  doi: 10.1023/A:1014414520282.  Google Scholar

[4]

D. Mager and W. Krzyzanski, Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition,, Pharm. Research, 22 (2005), 1589.  doi: 10.1007/s11095-005-6650-0.  Google Scholar

[5]

L. Michaelis and M. L. Menten, Die Kinetik der Invertinwirkung,, Biochem. Z., 49 (1913), 333.   Google Scholar

[6]

L. A. Peletier and J. Gabrielsson, Dynamics of target-mediated drug disposition,, European Journal of Pharmaceutical Sciences, 38 (2009), 445.  doi: 10.1016/j.ejps.2009.09.007.  Google Scholar

[7]

L. A. Peletier, N. Benson and P. H. van der Graaf, Impact of plasma-protein binding on receptor occupancy: An analytical description,, J. Theor. Biology, 256 (2009), 253.  doi: 10.1016/j.jtbi.2008.09.014.  Google Scholar

[8]

E. Snoeck, Ph. Jacqmin, A. van Peer and M. Danhof, A combined specific target site binding and pharmacokinetic model to explore the non-linear disposition of draflazine,, J. Pharmacokinetics and Biopharmaceutics, 27 (1999), 257.  doi: 10.1023/A:1020943029130.  Google Scholar

[9]

L. A. Segel, On the validity of the steady state assumption of enzyme kinetics,, Bull. Math. Biol., 50 (1988), 579.  doi: 10.1016/S0092-8240(88)80057-0.  Google Scholar

[10]

L. A. Segel and M. Slemrod, The quasi-steady state assumption: A case study in perturbation,, SIAM Review, 31 (1989), 446.  doi: 10.1137/1031091.  Google Scholar

[11]

Y. Sugiyama and M. Hanano, Receptor-mediated transport of peptide hormones and its importance in the overall hormone disposition in the body,, Pharm. Research {\bf 6} (1989), 6 (1989), 192.   Google Scholar

show all references

References:
[1]

L. Gibiansky, E. Gibiansky, T. Kakkar and P. Ma, Approximations of the target-mediated drug disposition model and identifying of model parameters,, J. Pharmacokinetics Phamacodynamics, 35 (2008), 573.  doi: 10.1007/s10928-008-9102-8.  Google Scholar

[2]

L. Gibiansky and E. Gibiansky, Target-mediated drug disposition model for drugs that bind to more than one target,, J. Pharmacokinetics Phamacodynamics, 37 (2010), 323.  doi: 10.1007/s10928-010-9163-3.  Google Scholar

[3]

D. Mager and W. J. Jusko, General pharmacokinetic model for drugs exhibiting target-mediated drug disposition,, J. Pharmacokinetics and Phamacodynamics, 28 (2001), 507.  doi: 10.1023/A:1014414520282.  Google Scholar

[4]

D. Mager and W. Krzyzanski, Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition,, Pharm. Research, 22 (2005), 1589.  doi: 10.1007/s11095-005-6650-0.  Google Scholar

[5]

L. Michaelis and M. L. Menten, Die Kinetik der Invertinwirkung,, Biochem. Z., 49 (1913), 333.   Google Scholar

[6]

L. A. Peletier and J. Gabrielsson, Dynamics of target-mediated drug disposition,, European Journal of Pharmaceutical Sciences, 38 (2009), 445.  doi: 10.1016/j.ejps.2009.09.007.  Google Scholar

[7]

L. A. Peletier, N. Benson and P. H. van der Graaf, Impact of plasma-protein binding on receptor occupancy: An analytical description,, J. Theor. Biology, 256 (2009), 253.  doi: 10.1016/j.jtbi.2008.09.014.  Google Scholar

[8]

E. Snoeck, Ph. Jacqmin, A. van Peer and M. Danhof, A combined specific target site binding and pharmacokinetic model to explore the non-linear disposition of draflazine,, J. Pharmacokinetics and Biopharmaceutics, 27 (1999), 257.  doi: 10.1023/A:1020943029130.  Google Scholar

[9]

L. A. Segel, On the validity of the steady state assumption of enzyme kinetics,, Bull. Math. Biol., 50 (1988), 579.  doi: 10.1016/S0092-8240(88)80057-0.  Google Scholar

[10]

L. A. Segel and M. Slemrod, The quasi-steady state assumption: A case study in perturbation,, SIAM Review, 31 (1989), 446.  doi: 10.1137/1031091.  Google Scholar

[11]

Y. Sugiyama and M. Hanano, Receptor-mediated transport of peptide hormones and its importance in the overall hormone disposition in the body,, Pharm. Research {\bf 6} (1989), 6 (1989), 192.   Google Scholar

[1]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[2]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[4]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[5]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[6]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[7]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[8]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[9]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[12]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[13]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[14]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[15]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[16]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[17]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[18]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[20]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (3)

[Back to Top]