September  2012, 17(6): 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

Lyapunov-Schmidt reduction for optimal control problems

1. 

Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 63130-4899

2. 

Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653

Received  August 2011 Revised  March 2012 Published  May 2012

In this paper, we use the method of characteristics to study singularities in the flow of a parameterized family of extremals for an optimal control problem. By means of the Lyapunov--Schmidt reduction a characterization of fold and cusp points is given. Examples illustrate the local behaviors of the flow near these singular points. Singularities of fold type correspond to the typical conjugate points as they arise for the classical problem of minimum surfaces of revolution in the calculus of variations and local optimality of trajectories ceases at fold points. Simple cusp points, on the other hand, generate a cut-locus that limits the optimality of close-by trajectories globally to times prior to the conjugate points.
Citation: Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201
References:
[1]

L. Berkovitz, "Optimal Control Theory,'', Applied Mathematical Sciences, (1974).   Google Scholar

[2]

G. Bliss, "Calculus of Variations,'', The Mathematical Association of America, (1925).   Google Scholar

[3]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,'', AIMS Series on Applied Mathematics, 2 (2007).   Google Scholar

[4]

A. E. Bryson, Jr. and Y. C. Ho, "Applied Optimal Control. Optimization, Estimation, and Control,'' Revised Printing,, Hemisphere Publishing Corp., (1975).   Google Scholar

[5]

C. I. Byrnes and H. Frankowska, Unicité des solutions optimales et absence de chocs pour les équations d'Hamilton-Jacobi-Bellman et de Riccati,, C. R. Acad. Sci. Paris Série I Math., 315 (1992), 427.   Google Scholar

[6]

C. I. Byrnes and A. Jhemi, Shock waves for Riccati partial differential equations arising in nonlinear optimal control,, in, 12 (1992), 211.   Google Scholar

[7]

M. Golubitsky and V. Guillemin, "Stable Mappings and their Singularities,'', Graduate Texts in Mathematics, (1973).   Google Scholar

[8]

M. Golubitsky and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory," Vol. I,, Applied Mathematical Sciences, 51 (1985).   Google Scholar

[9]

M. Kiefer and H. Schättler, Parametrized families of extremals and singularities in solutions to the Hamilton-Jacobi-Bellman equation,, SIAM J. on Control and Optimization, 37 (1999), 1346.  doi: 10.1137/S0363012997319139.  Google Scholar

[10]

J. Noble and H. Schättler, Sufficient conditions for relative minima of broken extremals in optimal control theory,, J. of Mathematical Analysis and Applications, 269 (2002), 98.  doi: 10.1016/S0022-247X(02)00008-2.  Google Scholar

[11]

U. Ledzewicz, A. Nowakowski and H. Schättler, Stratifiable families of extremals and sufficient conditions for optimality in optimal control problems,, J. of Optimization Theory and Applications (JOTA), 122 (2004), 345.  doi: 10.1023/B:JOTA.0000042525.50701.9a.  Google Scholar

[12]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,'', Translated by D. E. Brown, (1964).   Google Scholar

[13]

H. Schättler and U. Ledzewicz, Synthesis of optimal controlled trajectories with chattering arcs,, Dynamics of Continuous, 19 (2012), 161.   Google Scholar

[14]

H. Schättler and U. Ledzewicz, Perturbation feedback control-a geometric interpretation,, Numerical Algebra, (2012).   Google Scholar

[15]

H. Schättler and U. Ledzewicz, "Geometric Optimal Control-Theory, Methods and Examples,'', Springer-Verlag, (2012).   Google Scholar

[16]

H. Whitney, Elementary structure of real algebraic varieties,, Ann. Math. (2), 66 (1957), 545.  doi: 10.2307/1969908.  Google Scholar

[17]

L. C. Young, "Lectures on the Calculus of Variations and Optimal Control Theory,'', Foreword by Wendell H. Fleming, (1969).   Google Scholar

show all references

References:
[1]

L. Berkovitz, "Optimal Control Theory,'', Applied Mathematical Sciences, (1974).   Google Scholar

[2]

G. Bliss, "Calculus of Variations,'', The Mathematical Association of America, (1925).   Google Scholar

[3]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,'', AIMS Series on Applied Mathematics, 2 (2007).   Google Scholar

[4]

A. E. Bryson, Jr. and Y. C. Ho, "Applied Optimal Control. Optimization, Estimation, and Control,'' Revised Printing,, Hemisphere Publishing Corp., (1975).   Google Scholar

[5]

C. I. Byrnes and H. Frankowska, Unicité des solutions optimales et absence de chocs pour les équations d'Hamilton-Jacobi-Bellman et de Riccati,, C. R. Acad. Sci. Paris Série I Math., 315 (1992), 427.   Google Scholar

[6]

C. I. Byrnes and A. Jhemi, Shock waves for Riccati partial differential equations arising in nonlinear optimal control,, in, 12 (1992), 211.   Google Scholar

[7]

M. Golubitsky and V. Guillemin, "Stable Mappings and their Singularities,'', Graduate Texts in Mathematics, (1973).   Google Scholar

[8]

M. Golubitsky and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory," Vol. I,, Applied Mathematical Sciences, 51 (1985).   Google Scholar

[9]

M. Kiefer and H. Schättler, Parametrized families of extremals and singularities in solutions to the Hamilton-Jacobi-Bellman equation,, SIAM J. on Control and Optimization, 37 (1999), 1346.  doi: 10.1137/S0363012997319139.  Google Scholar

[10]

J. Noble and H. Schättler, Sufficient conditions for relative minima of broken extremals in optimal control theory,, J. of Mathematical Analysis and Applications, 269 (2002), 98.  doi: 10.1016/S0022-247X(02)00008-2.  Google Scholar

[11]

U. Ledzewicz, A. Nowakowski and H. Schättler, Stratifiable families of extremals and sufficient conditions for optimality in optimal control problems,, J. of Optimization Theory and Applications (JOTA), 122 (2004), 345.  doi: 10.1023/B:JOTA.0000042525.50701.9a.  Google Scholar

[12]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,'', Translated by D. E. Brown, (1964).   Google Scholar

[13]

H. Schättler and U. Ledzewicz, Synthesis of optimal controlled trajectories with chattering arcs,, Dynamics of Continuous, 19 (2012), 161.   Google Scholar

[14]

H. Schättler and U. Ledzewicz, Perturbation feedback control-a geometric interpretation,, Numerical Algebra, (2012).   Google Scholar

[15]

H. Schättler and U. Ledzewicz, "Geometric Optimal Control-Theory, Methods and Examples,'', Springer-Verlag, (2012).   Google Scholar

[16]

H. Whitney, Elementary structure of real algebraic varieties,, Ann. Math. (2), 66 (1957), 545.  doi: 10.2307/1969908.  Google Scholar

[17]

L. C. Young, "Lectures on the Calculus of Variations and Optimal Control Theory,'', Foreword by Wendell H. Fleming, (1969).   Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[5]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[6]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[7]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[8]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[9]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[11]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[12]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[13]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[14]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[15]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[16]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[17]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[18]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[19]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[20]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]