September  2012, 17(6): 2225-2242. doi: 10.3934/dcdsb.2012.17.2225

Convex spacelike hypersurfaces of constant curvature in de Sitter space

1. 

Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, United States

Received  October 2011 Revised  November 2011 Published  May 2012

We show that for a very general and natural class of curvature functions (for example the curvature quotients $(\sigma_n/\sigma_l)^{\frac{1}{n-l}}$) the problem of finding a complete spacelike strictly convex hypersurface in de Sitter space satisfying $f(\kappa)=\sigma \in (1,\infty)$ with a prescribed compact future asymptotic boundary $\Gamma$ at infinity has at least one smooth solution (if $l=1$ or $l=2$ there is uniqueness). This is the exact analogue of the asymptotic plateau problem in Hyperbolic space and is in fact a precise dual problem. By using this duality we obtain for free the existence of strictly convex solutions to the asymptotic Plateau problem for $\sigma_l=\sigma,\,1 \leq l < n$ in both de Sitter and Hyperbolic space.
Citation: Joel Spruck, Ling Xiao. Convex spacelike hypersurfaces of constant curvature in de Sitter space. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2225-2242. doi: 10.3934/dcdsb.2012.17.2225
References:
[1]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equations,, Comm. Pure Applied Math., 37 (1984), 369. doi: 10.1002/cpa.3160370306. Google Scholar

[2]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of eigenvalues of the Hessians,, Acta Math., 155 (1985), 261. doi: 10.1007/BF02392544. Google Scholar

[3]

C. Gerhardt, "Curvature Problems,'', Series in Geometry and Topology, 39 (2006). Google Scholar

[4]

B. Guan and J. Spruck, Hypersurfaces of constant mean curvature in hyperbolic space with prescribed asymptotic boundary at infinity,, Amer. J. Math., 122 (2000), 1039. doi: 10.1353/ajm.2000.0038. Google Scholar

[5]

B. Guan, J. Spruck and M. Szapiel, Hypersurfaces of constant curvature in hyperbolic space. I,, J. Geom. Anal., 19 (2009), 772. doi: 10.1007/s12220-009-9086-7. Google Scholar

[6]

B. Guan and J. Spruck, Hypersurfaces of constant curvature in hyperbolic space. II,, J. European Math. Soc., 12 (2010), 797. doi: 10.4171/JEMS/215. Google Scholar

[7]

B. Guan and J. Spruck, Convex hypersurfaces of constant curvature in Hyperbolic space,, in, (2011), 241. Google Scholar

[8]

S. W. Hawking and G. F. Ellis, "The Large Scale Structure of Spacetime,", Cambridge Monographs on Mathematical Physics, (1973). Google Scholar

[9]

S. Montiel, Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter spaces,, J. Math. Soc. Japan, 55 (2003), 915. doi: 10.2969/jmsj/1191418756. Google Scholar

[10]

B. Nelli and J. Spruck, On existence and uniqueness of constant mean curvature hypersurfaces in hyperbolic space,, in, (1996), 253. Google Scholar

[11]

V. Oliker, A priori estimates of the principal curvatures of spacelike hypersurfaces in de Sitter space with applications to hypersurfaces in hyperbolic space,, Amer. J. Math., 114 (1992), 605. doi: 10.2307/2374771. Google Scholar

[12]

H. Rosenberg and J. Spruck, On the existence of convex hypersurfaces of constant Gauss curvature in hyperbolic space,, J. Differential Geom., 40 (1994), 379. Google Scholar

[13]

J.-M. Schlenker, Hypersurfaces in $H^n$ and the space of its horospheres,, Geom. Funct. Anal., 12 (2002), 395. doi: 10.1007/s00039-002-8252-x. Google Scholar

show all references

References:
[1]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equations,, Comm. Pure Applied Math., 37 (1984), 369. doi: 10.1002/cpa.3160370306. Google Scholar

[2]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of eigenvalues of the Hessians,, Acta Math., 155 (1985), 261. doi: 10.1007/BF02392544. Google Scholar

[3]

C. Gerhardt, "Curvature Problems,'', Series in Geometry and Topology, 39 (2006). Google Scholar

[4]

B. Guan and J. Spruck, Hypersurfaces of constant mean curvature in hyperbolic space with prescribed asymptotic boundary at infinity,, Amer. J. Math., 122 (2000), 1039. doi: 10.1353/ajm.2000.0038. Google Scholar

[5]

B. Guan, J. Spruck and M. Szapiel, Hypersurfaces of constant curvature in hyperbolic space. I,, J. Geom. Anal., 19 (2009), 772. doi: 10.1007/s12220-009-9086-7. Google Scholar

[6]

B. Guan and J. Spruck, Hypersurfaces of constant curvature in hyperbolic space. II,, J. European Math. Soc., 12 (2010), 797. doi: 10.4171/JEMS/215. Google Scholar

[7]

B. Guan and J. Spruck, Convex hypersurfaces of constant curvature in Hyperbolic space,, in, (2011), 241. Google Scholar

[8]

S. W. Hawking and G. F. Ellis, "The Large Scale Structure of Spacetime,", Cambridge Monographs on Mathematical Physics, (1973). Google Scholar

[9]

S. Montiel, Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter spaces,, J. Math. Soc. Japan, 55 (2003), 915. doi: 10.2969/jmsj/1191418756. Google Scholar

[10]

B. Nelli and J. Spruck, On existence and uniqueness of constant mean curvature hypersurfaces in hyperbolic space,, in, (1996), 253. Google Scholar

[11]

V. Oliker, A priori estimates of the principal curvatures of spacelike hypersurfaces in de Sitter space with applications to hypersurfaces in hyperbolic space,, Amer. J. Math., 114 (1992), 605. doi: 10.2307/2374771. Google Scholar

[12]

H. Rosenberg and J. Spruck, On the existence of convex hypersurfaces of constant Gauss curvature in hyperbolic space,, J. Differential Geom., 40 (1994), 379. Google Scholar

[13]

J.-M. Schlenker, Hypersurfaces in $H^n$ and the space of its horospheres,, Geom. Funct. Anal., 12 (2002), 395. doi: 10.1007/s00039-002-8252-x. Google Scholar

[1]

Makoto Nakamura. Remarks on a dispersive equation in de Sitter spacetime. Conference Publications, 2015, 2015 (special) : 901-905. doi: 10.3934/proc.2015.0901

[2]

Yannan Liu, Hongjie Ju. Non-collapsing for a fully nonlinear inverse curvature flow. Communications on Pure & Applied Analysis, 2017, 16 (3) : 945-952. doi: 10.3934/cpaa.2017045

[3]

Karen Yagdjian. The semilinear Klein-Gordon equation in de Sitter spacetime. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 679-696. doi: 10.3934/dcdss.2009.2.679

[4]

Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure & Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549

[5]

Qinian Jin, YanYan Li. Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 367-377. doi: 10.3934/dcds.2006.15.367

[6]

Ali Hyder, Luca Martinazzi. Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 283-299. doi: 10.3934/dcds.2015.35.283

[7]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[8]

Fabio Punzo. Support properties of solutions to nonlinear parabolic equations with variable density in the hyperbolic space. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 657-670. doi: 10.3934/dcdss.2012.5.657

[9]

Misha Bialy. On Totally integrable magnetic billiards on constant curvature surface. Electronic Research Announcements, 2012, 19: 112-119. doi: 10.3934/era.2012.19.112

[10]

Matthias Eller. Loss of derivatives for hyperbolic boundary problems with constant coefficients. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1347-1361. doi: 10.3934/dcdsb.2018154

[11]

Doan The Hieu, Tran Le Nam. The classification of constant weighted curvature curves in the plane with a log-linear density. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1641-1652. doi: 10.3934/cpaa.2014.13.1641

[12]

Jérôme Bertrand. Prescription of Gauss curvature on compact hyperbolic orbifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1269-1284. doi: 10.3934/dcds.2014.34.1269

[13]

Qianzhong Ou. Nonexistence results for a fully nonlinear evolution inequality. Electronic Research Announcements, 2016, 23: 19-24. doi: 10.3934/era.2016.23.003

[14]

Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845

[15]

Isabeau Birindelli, Francoise Demengel. The dirichlet problem for singluar fully nonlinear operators. Conference Publications, 2007, 2007 (Special) : 110-121. doi: 10.3934/proc.2007.2007.110

[16]

Luis Caffarelli, Luis Duque, Hernán Vivas. The two membranes problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6015-6027. doi: 10.3934/dcds.2018152

[17]

Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081

[18]

Julián Fernández Bonder, Julio D. Rossi. Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains. Communications on Pure & Applied Analysis, 2002, 1 (3) : 359-378. doi: 10.3934/cpaa.2002.1.359

[19]

David L. Finn. Noncompact manifolds with constant negative scalar curvature and singular solutions to semihnear elliptic equations. Conference Publications, 1998, 1998 (Special) : 262-275. doi: 10.3934/proc.1998.1998.262

[20]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]