September  2012, 17(6): 2225-2242. doi: 10.3934/dcdsb.2012.17.2225

Convex spacelike hypersurfaces of constant curvature in de Sitter space

1. 

Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, United States

Received  October 2011 Revised  November 2011 Published  May 2012

We show that for a very general and natural class of curvature functions (for example the curvature quotients $(\sigma_n/\sigma_l)^{\frac{1}{n-l}}$) the problem of finding a complete spacelike strictly convex hypersurface in de Sitter space satisfying $f(\kappa)=\sigma \in (1,\infty)$ with a prescribed compact future asymptotic boundary $\Gamma$ at infinity has at least one smooth solution (if $l=1$ or $l=2$ there is uniqueness). This is the exact analogue of the asymptotic plateau problem in Hyperbolic space and is in fact a precise dual problem. By using this duality we obtain for free the existence of strictly convex solutions to the asymptotic Plateau problem for $\sigma_l=\sigma,\,1 \leq l < n$ in both de Sitter and Hyperbolic space.
Citation: Joel Spruck, Ling Xiao. Convex spacelike hypersurfaces of constant curvature in de Sitter space. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2225-2242. doi: 10.3934/dcdsb.2012.17.2225
References:
[1]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equations,, Comm. Pure Applied Math., 37 (1984), 369.  doi: 10.1002/cpa.3160370306.  Google Scholar

[2]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of eigenvalues of the Hessians,, Acta Math., 155 (1985), 261.  doi: 10.1007/BF02392544.  Google Scholar

[3]

C. Gerhardt, "Curvature Problems,'', Series in Geometry and Topology, 39 (2006).   Google Scholar

[4]

B. Guan and J. Spruck, Hypersurfaces of constant mean curvature in hyperbolic space with prescribed asymptotic boundary at infinity,, Amer. J. Math., 122 (2000), 1039.  doi: 10.1353/ajm.2000.0038.  Google Scholar

[5]

B. Guan, J. Spruck and M. Szapiel, Hypersurfaces of constant curvature in hyperbolic space. I,, J. Geom. Anal., 19 (2009), 772.  doi: 10.1007/s12220-009-9086-7.  Google Scholar

[6]

B. Guan and J. Spruck, Hypersurfaces of constant curvature in hyperbolic space. II,, J. European Math. Soc., 12 (2010), 797.  doi: 10.4171/JEMS/215.  Google Scholar

[7]

B. Guan and J. Spruck, Convex hypersurfaces of constant curvature in Hyperbolic space,, in, (2011), 241.   Google Scholar

[8]

S. W. Hawking and G. F. Ellis, "The Large Scale Structure of Spacetime,", Cambridge Monographs on Mathematical Physics, (1973).   Google Scholar

[9]

S. Montiel, Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter spaces,, J. Math. Soc. Japan, 55 (2003), 915.  doi: 10.2969/jmsj/1191418756.  Google Scholar

[10]

B. Nelli and J. Spruck, On existence and uniqueness of constant mean curvature hypersurfaces in hyperbolic space,, in, (1996), 253.   Google Scholar

[11]

V. Oliker, A priori estimates of the principal curvatures of spacelike hypersurfaces in de Sitter space with applications to hypersurfaces in hyperbolic space,, Amer. J. Math., 114 (1992), 605.  doi: 10.2307/2374771.  Google Scholar

[12]

H. Rosenberg and J. Spruck, On the existence of convex hypersurfaces of constant Gauss curvature in hyperbolic space,, J. Differential Geom., 40 (1994), 379.   Google Scholar

[13]

J.-M. Schlenker, Hypersurfaces in $H^n$ and the space of its horospheres,, Geom. Funct. Anal., 12 (2002), 395.  doi: 10.1007/s00039-002-8252-x.  Google Scholar

show all references

References:
[1]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equations,, Comm. Pure Applied Math., 37 (1984), 369.  doi: 10.1002/cpa.3160370306.  Google Scholar

[2]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of eigenvalues of the Hessians,, Acta Math., 155 (1985), 261.  doi: 10.1007/BF02392544.  Google Scholar

[3]

C. Gerhardt, "Curvature Problems,'', Series in Geometry and Topology, 39 (2006).   Google Scholar

[4]

B. Guan and J. Spruck, Hypersurfaces of constant mean curvature in hyperbolic space with prescribed asymptotic boundary at infinity,, Amer. J. Math., 122 (2000), 1039.  doi: 10.1353/ajm.2000.0038.  Google Scholar

[5]

B. Guan, J. Spruck and M. Szapiel, Hypersurfaces of constant curvature in hyperbolic space. I,, J. Geom. Anal., 19 (2009), 772.  doi: 10.1007/s12220-009-9086-7.  Google Scholar

[6]

B. Guan and J. Spruck, Hypersurfaces of constant curvature in hyperbolic space. II,, J. European Math. Soc., 12 (2010), 797.  doi: 10.4171/JEMS/215.  Google Scholar

[7]

B. Guan and J. Spruck, Convex hypersurfaces of constant curvature in Hyperbolic space,, in, (2011), 241.   Google Scholar

[8]

S. W. Hawking and G. F. Ellis, "The Large Scale Structure of Spacetime,", Cambridge Monographs on Mathematical Physics, (1973).   Google Scholar

[9]

S. Montiel, Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter spaces,, J. Math. Soc. Japan, 55 (2003), 915.  doi: 10.2969/jmsj/1191418756.  Google Scholar

[10]

B. Nelli and J. Spruck, On existence and uniqueness of constant mean curvature hypersurfaces in hyperbolic space,, in, (1996), 253.   Google Scholar

[11]

V. Oliker, A priori estimates of the principal curvatures of spacelike hypersurfaces in de Sitter space with applications to hypersurfaces in hyperbolic space,, Amer. J. Math., 114 (1992), 605.  doi: 10.2307/2374771.  Google Scholar

[12]

H. Rosenberg and J. Spruck, On the existence of convex hypersurfaces of constant Gauss curvature in hyperbolic space,, J. Differential Geom., 40 (1994), 379.   Google Scholar

[13]

J.-M. Schlenker, Hypersurfaces in $H^n$ and the space of its horospheres,, Geom. Funct. Anal., 12 (2002), 395.  doi: 10.1007/s00039-002-8252-x.  Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[3]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[4]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[5]

Kengo Matsumoto. $ C^* $-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms. Electronic Research Archive, , () : -. doi: 10.3934/era.2021006

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[8]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[9]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[10]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[11]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[12]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[13]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[14]

Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005

[15]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[16]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[17]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[18]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[19]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[20]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]