September  2012, 17(6): 2243-2266. doi: 10.3934/dcdsb.2012.17.2243

Spreading speeds and traveling waves for non-cooperative integro-difference systems

1. 

Division of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069-7100

2. 

Department of Mathematics & Statistics, Arizona State University, Tempe, AZ 85287-1804

Received  July 2011 Revised  March 2012 Published  May 2012

The study of spatially explicit integro-difference systems when the local population dynamics are given in terms of discrete-time generations models has gained considerable attention over the past two decades. These nonlinear systems arise naturally in the study of the spatial dispersal of organisms. The brunt of the mathematical research on these systems, particularly, when dealing with cooperative systems, has focused on the study of the existence of traveling wave solutions and the characterization of their spreading speed. Here, we characterize the minimum propagation (spreading) speed, via the convergence of initial data to wave solutions, for a large class of non cooperative nonlinear systems of integro-difference equations. The spreading speed turns out to be the slowest speed from a family of non-constant traveling wave solutions. The applicability of these theoretical results is illustrated through the explicit study of an integro-difference system with local population dynamics governed by Hassell and Comins' non-cooperative competition model (1976). The corresponding integro-difference nonlinear systems that results from the redistribution of individuals via a dispersal kernel is shown to satisfy conditions that guarantee the existence of minimum speeds and traveling waves. This paper is dedicated to Avner Friedman as we celebrate his immense contributions to the fields of partial differential equations, integral equations, mathematical biology, industrial mathematics and applied mathematics in general. His leadership in the mathematical sciences and his mentorship of students and friends over several decades has made a huge difference in the personal and professional lives of many, including both of us.
Citation: Haiyan Wang, Carlos Castillo-Chavez. Spreading speeds and traveling waves for non-cooperative integro-difference systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2243-2266. doi: 10.3934/dcdsb.2012.17.2243
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population dynamics,, Adv. Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

F. Brauer and C. Castillo-Chávez, "Mathematical Models in Population Biology and Epidemiology,", Texts in Applied Mathematics, 40 (2001).   Google Scholar

[4]

K. Brown and J. Carr, Deterministic epidemic waves of critical velocity,, Math. Proc. Cambridge Philos. Soc., 81 (1977), 431.  doi: 10.1017/S0305004100053494.  Google Scholar

[5]

M. M. Crow, "Organizing Teaching and Research to Address the Grand Challenges of Sustainable Development,", BioScience, (2010), 488.   Google Scholar

[6]

O. Diekmann, Thresholds and traveling waves for the geographical spread of an infection,, J. Math. Biol., 6 (1978), 109.   Google Scholar

[7]

R. Fisher, The wave of advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 355.   Google Scholar

[8]

K. P. Hadeler and F. Rothe, Traveling fronts in nonlinear diffusion equation,, J. Math. Bio., 2 (1975), 251.   Google Scholar

[9]

K. P. Hadeler, Hyperbolic travelling fronts,, Proc. Edinb. Math. Soc. (2), 31 (1988), 89.  doi: 10.1017/S001309150000660X.  Google Scholar

[10]

K. P. Hadeler, Reaction transport systems,, in V.Capasso, 1714 (1999), 95.   Google Scholar

[11]

M. Hassell and H. Comins, Discrete time models for two-species competition,, Theoretical Population Biology, 9 (1976), 202.   Google Scholar

[12]

A. Hastings, K. Cuddington, K. Davies, C. Dugaw, S. Elmendorf, A. Freestone, S. Harrison, M. Holland, J. Lambrinos, U. Malvadkar, B. Melbourne, K. Moore, C. Taylor and D. Thomson, The spatial spread of invasions: New developments in theory and evidence,, Ecology Letters, 8 (2005), 91.   Google Scholar

[13]

R. Horn, C. Johnson and R. Charles, "Matrix Analysis,", Cambridge University Press, (1985).   Google Scholar

[14]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.  doi: 10.1137/070703016.  Google Scholar

[15]

H. Kierstad and L. B. Slobodkin, The size of water masses containing plankton blooms,, J. Mar. Res., 12 (1953), 141.   Google Scholar

[16]

A. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application á un probléme biologique,, Bull. Univ. Moscov. Ser. Internat. Sect., 1 (1937), 1.   Google Scholar

[17]

M. Kot, Discrete-time traveling waves: Ecological examples,, J. of Math. Biol., 30 (1992), 413.   Google Scholar

[18]

S. A. Levin, Toward a science of sustainability: Executive summary,, in, (2009), 4.   Google Scholar

[19]

S. A. Levin and R. T. Paine, Disturbance, patch formation, and community structure,, Proc. Nat. Acad. Sci. USA, 71 (1974), 2744.  doi: 10.1073/pnas.71.7.2744.  Google Scholar

[20]

A. Okubo, "Diffusion and Ecological Problems: Mathematical Models," An extended version of the Japanese edition, Ecology and Diffusion,, Biomathematics, 10 (1980).   Google Scholar

[21]

M. Lewis, B. Li and H. Weinberger, Spreading speed and linear determinacy for two-species competition models,, Journal of Mathematical Biology, 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[22]

B. Li, H. Weinberger and M. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosciences, 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[23]

B. Li, M. Lewis and H. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, Journal of Mathematical Biology, 58 (2009), 323.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[24]

, B. Li,, Personal communication., ().   Google Scholar

[25]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosciences, 93 (1989), 269.  doi: 10.1016/0025-5564(89)90027-8.  Google Scholar

[26]

L. Rass and J. Radcliffe, "Spatial Deterministic Epidemics,", Mathematical Surveys and Monographs, 102 (2003).   Google Scholar

[27]

S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equation,, Journal of Differential Equations, 237 (2007), 259.  doi: 10.1016/j.jde.2007.03.014.  Google Scholar

[28]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread,, J. of Math. Biol., 8 (1979), 173.   Google Scholar

[29]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.  doi: 10.1093/biomet/38.1-2.196.  Google Scholar

[30]

K. R. Ríos-Soto, C. Castillo-Chavez, M. Neubert, E. S. Titi and A.-A. Yakubu, Epidemic spread in populations at demographic equilibrium,, in, 410 (2006), 297.   Google Scholar

[31]

H. Wang, On the existence of traveling waves for delayed reaction-diffusion equations,, Journal of Differential Equations, 247 (2009), 887.  doi: 10.1016/j.jde.2009.04.002.  Google Scholar

[32]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems,, Journal of Nonlinear Science, 21 (2011), 747.  doi: 10.1007/s00332-011-9099-9.  Google Scholar

[33]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[34]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

[35]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[36]

H. F. Weinberger, Asymptotic behavior of a model in population genetics,, in, (1978), 1976.   Google Scholar

[37]

H. F. Weinberger, K. Kawasaki and N. Shigesada, Spreading speeds for a partially cooperative 2-species reaction-diffusion model,, Discrete and Continuous Dynamical Systems, 23 (2009), 1087.  doi: 10.3934/dcds.2009.23.1087.  Google Scholar

[38]

P. Weng, X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model,, Journal of Differential Equations, 229 (2006), 270.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population dynamics,, Adv. Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

F. Brauer and C. Castillo-Chávez, "Mathematical Models in Population Biology and Epidemiology,", Texts in Applied Mathematics, 40 (2001).   Google Scholar

[4]

K. Brown and J. Carr, Deterministic epidemic waves of critical velocity,, Math. Proc. Cambridge Philos. Soc., 81 (1977), 431.  doi: 10.1017/S0305004100053494.  Google Scholar

[5]

M. M. Crow, "Organizing Teaching and Research to Address the Grand Challenges of Sustainable Development,", BioScience, (2010), 488.   Google Scholar

[6]

O. Diekmann, Thresholds and traveling waves for the geographical spread of an infection,, J. Math. Biol., 6 (1978), 109.   Google Scholar

[7]

R. Fisher, The wave of advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 355.   Google Scholar

[8]

K. P. Hadeler and F. Rothe, Traveling fronts in nonlinear diffusion equation,, J. Math. Bio., 2 (1975), 251.   Google Scholar

[9]

K. P. Hadeler, Hyperbolic travelling fronts,, Proc. Edinb. Math. Soc. (2), 31 (1988), 89.  doi: 10.1017/S001309150000660X.  Google Scholar

[10]

K. P. Hadeler, Reaction transport systems,, in V.Capasso, 1714 (1999), 95.   Google Scholar

[11]

M. Hassell and H. Comins, Discrete time models for two-species competition,, Theoretical Population Biology, 9 (1976), 202.   Google Scholar

[12]

A. Hastings, K. Cuddington, K. Davies, C. Dugaw, S. Elmendorf, A. Freestone, S. Harrison, M. Holland, J. Lambrinos, U. Malvadkar, B. Melbourne, K. Moore, C. Taylor and D. Thomson, The spatial spread of invasions: New developments in theory and evidence,, Ecology Letters, 8 (2005), 91.   Google Scholar

[13]

R. Horn, C. Johnson and R. Charles, "Matrix Analysis,", Cambridge University Press, (1985).   Google Scholar

[14]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.  doi: 10.1137/070703016.  Google Scholar

[15]

H. Kierstad and L. B. Slobodkin, The size of water masses containing plankton blooms,, J. Mar. Res., 12 (1953), 141.   Google Scholar

[16]

A. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application á un probléme biologique,, Bull. Univ. Moscov. Ser. Internat. Sect., 1 (1937), 1.   Google Scholar

[17]

M. Kot, Discrete-time traveling waves: Ecological examples,, J. of Math. Biol., 30 (1992), 413.   Google Scholar

[18]

S. A. Levin, Toward a science of sustainability: Executive summary,, in, (2009), 4.   Google Scholar

[19]

S. A. Levin and R. T. Paine, Disturbance, patch formation, and community structure,, Proc. Nat. Acad. Sci. USA, 71 (1974), 2744.  doi: 10.1073/pnas.71.7.2744.  Google Scholar

[20]

A. Okubo, "Diffusion and Ecological Problems: Mathematical Models," An extended version of the Japanese edition, Ecology and Diffusion,, Biomathematics, 10 (1980).   Google Scholar

[21]

M. Lewis, B. Li and H. Weinberger, Spreading speed and linear determinacy for two-species competition models,, Journal of Mathematical Biology, 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[22]

B. Li, H. Weinberger and M. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosciences, 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[23]

B. Li, M. Lewis and H. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, Journal of Mathematical Biology, 58 (2009), 323.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[24]

, B. Li,, Personal communication., ().   Google Scholar

[25]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosciences, 93 (1989), 269.  doi: 10.1016/0025-5564(89)90027-8.  Google Scholar

[26]

L. Rass and J. Radcliffe, "Spatial Deterministic Epidemics,", Mathematical Surveys and Monographs, 102 (2003).   Google Scholar

[27]

S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equation,, Journal of Differential Equations, 237 (2007), 259.  doi: 10.1016/j.jde.2007.03.014.  Google Scholar

[28]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread,, J. of Math. Biol., 8 (1979), 173.   Google Scholar

[29]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.  doi: 10.1093/biomet/38.1-2.196.  Google Scholar

[30]

K. R. Ríos-Soto, C. Castillo-Chavez, M. Neubert, E. S. Titi and A.-A. Yakubu, Epidemic spread in populations at demographic equilibrium,, in, 410 (2006), 297.   Google Scholar

[31]

H. Wang, On the existence of traveling waves for delayed reaction-diffusion equations,, Journal of Differential Equations, 247 (2009), 887.  doi: 10.1016/j.jde.2009.04.002.  Google Scholar

[32]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems,, Journal of Nonlinear Science, 21 (2011), 747.  doi: 10.1007/s00332-011-9099-9.  Google Scholar

[33]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[34]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

[35]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[36]

H. F. Weinberger, Asymptotic behavior of a model in population genetics,, in, (1978), 1976.   Google Scholar

[37]

H. F. Weinberger, K. Kawasaki and N. Shigesada, Spreading speeds for a partially cooperative 2-species reaction-diffusion model,, Discrete and Continuous Dynamical Systems, 23 (2009), 1087.  doi: 10.3934/dcds.2009.23.1087.  Google Scholar

[38]

P. Weng, X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model,, Journal of Differential Equations, 229 (2006), 270.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[1]

Weiwei Ding, Xing Liang, Bin Xu. Spreading speeds of $N$-season spatially periodic integro-difference models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3443-3472. doi: 10.3934/dcds.2013.33.3443

[2]

Hui Xue, Jianhua Huang, Zhixian Yu. Invasion traveling wave solutions in temporally discrete random-diffusion systems with delays. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1107-1131. doi: 10.3934/dcdss.2017060

[3]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020047

[4]

Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417

[5]

Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2405-2450. doi: 10.3934/dcds.2014.34.2405

[6]

Mohammad El Smaily, François Hamel, Lionel Roques. Homogenization and influence of fragmentation in a biological invasion model. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 321-342. doi: 10.3934/dcds.2009.25.321

[7]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[8]

Wan-Tong Li, Li Zhang, Guo-Bao Zhang. Invasion entire solutions in a competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1531-1560. doi: 10.3934/dcds.2015.35.1531

[9]

Aijun Zhang. Traveling wave solutions with mixed dispersal for spatially periodic Fisher-KPP equations. Conference Publications, 2013, 2013 (special) : 815-824. doi: 10.3934/proc.2013.2013.815

[10]

Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006

[11]

Xiongxiong Bao, Wenxian Shen, Zhongwei Shen. Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Communications on Pure & Applied Analysis, 2019, 18 (1) : 361-396. doi: 10.3934/cpaa.2019019

[12]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[13]

Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735

[14]

S. Rüdiger, J. Casademunt, L. Kramer. Kinks in stripe forming systems under traveling wave forcing. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1027-1042. doi: 10.3934/dcdsb.2005.5.1027

[15]

Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663

[16]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[17]

Franziska Hinkelmann, Reinhard Laubenbacher. Boolean models of bistable biological systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1443-1456. doi: 10.3934/dcdss.2011.4.1443

[18]

Chiun-Chuan Chen, Li-Chang Hung. Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1451-1469. doi: 10.3934/cpaa.2016.15.1451

[19]

Azmy S. Ackleh, Keng Deng, Qihua Huang. Difference approximation for an amphibian juvenile-adult dispersal mode. Conference Publications, 2011, 2011 (Special) : 1-12. doi: 10.3934/proc.2011.2011.1

[20]

Chufen Wu, Peixuan Weng. Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 867-892. doi: 10.3934/dcdsb.2011.15.867

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]