Advanced Search
Article Contents
Article Contents

On sufficient conditions for a linearly determinate spreading speed

Abstract Related Papers Cited by
  • It is shown how to construct criteria of the form $f(u)\le f'(0)K(u)$ which guarantee that the spreading speed $c^*$ of a reaction-diffusion equation with the reaction term $f(u)$ is linearly determinate in the sense that $c^*=2\sqrt{f'(0)}$. Some of these criteria improve the classical condition $f(u)\le f'(0)u$, and permit the presence of sharp Allee effects. Inequalities which guarantee the failure of linear determinacy are also presented.
    Mathematics Subject Classification: Primary: 35K60, 35B40; Secondary: 92A15.


    \begin{equation} \\ \end{equation}
  • [1]

    W. C. Allee, "Animal Aggregations. A Study in General Sociology,'' U. of Chicago Press, 1931.


    B. H. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection Reaction," Progress in Nonlinear Differential Equations and their Applications, 60, Birkhäuser Verlag, Basel, 2004.


    K. P. Hadeler and F. Rothe, Traveling fronts in nonlinear diffusion equations, J. Math. Biol., 2 (1975), 251-263.


    A. N. Kolmogorov, I. G. Petrovski and N. S. Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application á un probléme biologique, Bull. Univ. d'État á Moscou Ser. Intern., 1 (1937), 1-26.


    M.-H. Wang and M. Kot, Speeds of invasion in a model with strong or weak Allee effects, Mathematical Biosciences, 171 (2001), 83-97.doi: 10.1016/S0025-5564(01)00048-7.

  • 加载中

Article Metrics

HTML views() PDF downloads(62) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint