September  2012, 17(6): 2267-2280. doi: 10.3934/dcdsb.2012.17.2267

On sufficient conditions for a linearly determinate spreading speed

1. 

School of Mathematics, University of Minnesota, 206 Church Street, Minneapolis, MN 55455, United States

Received  June 2011 Revised  December 2011 Published  May 2012

It is shown how to construct criteria of the form $f(u)\le f'(0)K(u)$ which guarantee that the spreading speed $c^*$ of a reaction-diffusion equation with the reaction term $f(u)$ is linearly determinate in the sense that $c^*=2\sqrt{f'(0)}$. Some of these criteria improve the classical condition $f(u)\le f'(0)u$, and permit the presence of sharp Allee effects. Inequalities which guarantee the failure of linear determinacy are also presented.
Citation: Hans Weinberger. On sufficient conditions for a linearly determinate spreading speed. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2267-2280. doi: 10.3934/dcdsb.2012.17.2267
References:
[1]

W. C. Allee, "Animal Aggregations. A Study in General Sociology,'', U. of Chicago Press, (1931).   Google Scholar

[2]

B. H. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection Reaction,", Progress in Nonlinear Differential Equations and their Applications, 60 (2004).   Google Scholar

[3]

K. P. Hadeler and F. Rothe, Traveling fronts in nonlinear diffusion equations,, J. Math. Biol., 2 (1975), 251.   Google Scholar

[4]

A. N. Kolmogorov, I. G. Petrovski and N. S. Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application á un probléme biologique,, Bull. Univ. d'État á Moscou Ser. Intern., 1 (1937), 1.   Google Scholar

[5]

M.-H. Wang and M. Kot, Speeds of invasion in a model with strong or weak Allee effects,, Mathematical Biosciences, 171 (2001), 83.  doi: 10.1016/S0025-5564(01)00048-7.  Google Scholar

show all references

References:
[1]

W. C. Allee, "Animal Aggregations. A Study in General Sociology,'', U. of Chicago Press, (1931).   Google Scholar

[2]

B. H. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection Reaction,", Progress in Nonlinear Differential Equations and their Applications, 60 (2004).   Google Scholar

[3]

K. P. Hadeler and F. Rothe, Traveling fronts in nonlinear diffusion equations,, J. Math. Biol., 2 (1975), 251.   Google Scholar

[4]

A. N. Kolmogorov, I. G. Petrovski and N. S. Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application á un probléme biologique,, Bull. Univ. d'État á Moscou Ser. Intern., 1 (1937), 1.   Google Scholar

[5]

M.-H. Wang and M. Kot, Speeds of invasion in a model with strong or weak Allee effects,, Mathematical Biosciences, 171 (2001), 83.  doi: 10.1016/S0025-5564(01)00048-7.  Google Scholar

[1]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[2]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[3]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[4]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[5]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[6]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[7]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[11]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[12]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[16]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[17]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[18]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[19]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[20]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]