Citation: |
[1] |
D. A. Andow, P. M. Kareiva, Simon A. Levin and Akira Okubo, Spread of invading organisms, Landscape Ecology, 4 (1990), 177-188. |
[2] |
M. Andersen, Properties of some density-dependent integrodifference equation population models, Mathematical Biosciences, 104 (1991), 135-157.doi: 10.1016/0025-5564(91)90034-G. |
[3] |
A. J. Bateman, Is gene dispersion normal, Heredity, 4 (1950), 353-363. |
[4] |
M. G. Bhat, K. R. Fister and S. Lenhart, An optimal control model for surface runoff contamination of a large river basin, Natural Resource Modeling Journal, 12 (1999), 175-195.doi: 10.1111/j.1939-7445.1999.tb00009.x. |
[5] |
S. Chandrasekhar, Stochastic problems in physics and astronomy, Reviews of Modern Physics, 15 (1943), 1-89.doi: 10.1103/RevModPhys.15.1. |
[6] |
J. S. Clark, Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord, American Naturalist, 152 (1998), 204-224.doi: 10.1086/286162. |
[7] |
Michael R. Easterling, Stephen P. Ellner and Philip M. Dixon, Size-specific sensitivity: Applying a new structured population model, Ecological Society of America, 81 (2000), 694-708. |
[8] |
Ivar Ekeland and Roger Témam, "Convex Analysis and Variational Problems," Studies in Mathematics and its Applications, Vol. 1, North-Holland Publishing Co., Amsterdam-Oxford, American Elsevier Publishing Co., Inc., New York, 1976. |
[9] |
Enrico Fermi, "Thermodynamics,'' Dover Publications, New York, 1956. |
[10] |
W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control,'' Applications of Mathematics, No. 1, Springer-Verlag, Berlin-New York, 1975. |
[11] |
H. I. Freedman, J. B. Shukla and Y. Takeuchi, Population diffusion in a two-patch environment, Mathematical Biosciences, 95 (1989), 111-123.doi: 10.1016/0025-5564(89)90055-2. |
[12] |
H. Gaff, H. R. Joshi and S. Lenhart, Optimal harvesting during an invasion of a sublethal plant pathogen, Environment and Development Economics Journal, 12 (2007), 673-686. |
[13] |
W. Hackbush, A numerical method for solving parabolic equations with opposite orientations, Computing, 20 (1978), 229-240.doi: 10.1007/BF02251947. |
[14] |
E. E. Holmes, M. A. Lewis, J. E. Banks and R. R. Veit, Partial differential equations in ecology spatial interactions and population dynamics, Ecology, 75 (1994), 18-29.doi: 10.2307/1939378. |
[15] |
H. R. Joshi, S. Lenhart and H. Gaff, Optimal harvesting in an integrodifference population model, Optimal Control Applications and Methods, 27 (2006), 61-75.doi: 10.1002/oca.763. |
[16] |
H. R. Joshi, S. Lenhart, H. Lou and H. Gaff, Harvesting control in an integrodifference population model with concave growth term, Nonlinear Anal. Hybrid Syst, 1 (2007), 417-429. |
[17] |
John M. Kean and Nigel D. Barlow, A spatial model for the successful biological control of sitona discoideus by microctonus aethiopoides, The Journal of Applied Ecology, 1 (2001), 162-169. |
[18] |
M. Kot and W. Schaffer, Discrete-time growth-dispersal models, Math. Biosci., 80 (1986), 109-136.doi: 10.1016/0025-5564(86)90069-6. |
[19] |
M. Kot, Discrete-time travelling waves: Ecological examples, Journal of Mathematical Biology, 30 (1992), 413-436.doi: 10.1007/BF00173295. |
[20] |
M. Kot, Do invading organisms do the wave, Canadian Applied Mathematics Quarterly, 10 (2002), 139-170. |
[21] |
M. Kot, M. Lewis and P. van den Driessche, Dispersal data and the spread of invading organisms, Ecology, 77 (1996), 2027-2042.doi: 10.2307/2265698. |
[22] |
Suzanne Lenhart and John Workman, "Optimal Control Applied to Biological Models,'' Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, FL, 2007. |
[23] |
M. A. Lewis, Variability, patchiness, and jump dispersal in the spread of an invading population, in "Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions" (eds. D. Tilman and P. Kareiva), Princeton University Press, (1997), 46-74. |
[24] |
Xun Jing Li and Jiong Min Yong, "Optimal Control Theory for Infinite Dimensional Systems,'' Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1995. |
[25] |
D. L. Lukes, "Differential Equations. Classical to Controlled,'' Mathematics in Science and Engineering, 162, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982. |
[26] |
G. M. MacDonald, Fossil pollen analysis and the reconstruction of plant invasions, Advances in Ecological Research, 24 (1993), 67-109.doi: 10.1016/S0065-2504(08)60041-0. |
[27] |
J. D. Murray, E. A. Stanley and D. L. Brown, On the spread of rabies among foxes, Proc. Roy. Soc. London Ser., 229 (1986), 111-150.doi: 10.1098/rspb.1986.0078. |
[28] |
M. Neubert, M. Kot and M. A. Lewis, Dispersal and pattern formation in a discrete-time predator-prey model, Theoretical Population Biology, 48 (1995), 7-43.doi: 10.1006/tpbi.1995.1020. |
[29] |
L. S. Pontryagin, V. G. Boltyanskiĭ, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,'' Wiley, New York, 1956. |
[30] |
M. Slatkin, Gene flow and selection in a cline, Genetics, 75 (1973), 733-756. |
[31] |
M. Slatkin, Gene flow and selection in a two-locus system, Genetics, 81 (1975), 787-802. |
[32] |
J. Lubben, D. Boeckner, R. Rebarber, S. Townley and B. Tenhumberg, Parameterizing the growth-decline boundary for uncertain population projection models, Theoretical Population Biology, 75 (2009), 85-97.doi: 10.1016/j.tpb.2008.11.004. |
[33] |
Richard Rebarber, Brigitte Tenhumberg and Stuart Townley, Global asymptotic stability of density dependent integral population projection models, Theoretical Population Biology, 81 (2002), 81-87.doi: 10.1016/j.tpb.2011.11.002. |
[34] |
C. Reid, "The origin of the British Flora,'' Dualu, London, 1899. |
[35] |
S. P. Sethi and G. L. Thompson, "Optimal Control Theory. Applications to Management Science and Economics,'' Second edition, Kluwer Academic Publishers, Boston, MA, 2000. |
[36] |
M. A. Lewis and R. W. Van Kirk, Integrodifference models for persistence in fragmented habitats, Bulletin of Mathematical Biology, 59 (1997), 107-137.doi: 10.1016/S0092-8240(96)00060-2. |
[37] |
H. F. Weinberger, Asymptotic behavior of a model in population genetics, in "Nonlinear Partial Differential Equations and Applications" (Proc. Special Sem., Indiana Univ., Bloomington, Ind., 1976-1977), Lecture Notes in Mathematics, 648, Springer, Berlin, (1978), 47-96. |
[38] |
K. Yosida, "Functional Analysis,'' 6th edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 123, Springer-Verlag, Berlin-New York, 1980. |