October  2012, 17(7): 2313-2327. doi: 10.3934/dcdsb.2012.17.2313

From a PDE model to an ODE model of dynamics of synaptic depression

1. 

Department of Mathematics, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin

2. 

Faculty of Mathematics, Physics and Computer Science, Maria Curie-Skŀodowska University in Lublin, Pl. Marii Curie-Skŀodowskiej 1, 20-031 Lublin, Poland

Received  January 2012 Revised  February 2012 Published  July 2012

We provide a link between two recent models of dynamics of synaptic depression. To this end, we specify the missing transmission conditions in the PDE model of Bielecki and Kalita, and show that if diffusion is fast and communication between pools is slow, the PDE model is well approximated by the ODE model of Aristizabal and Glavinovič. From the mathematical point of view the ODE model is obtained as a singular perturbation of the PDE model with singularities both in the operator and in the boundary and transmission conditions. The result is put in the context of degenerate convergence of semigroups of operators, where a sequence of strongly continuous semigroups approaches a semigroup that is strongly continuous only on a subspace of the original Banach space. Biologically, our approach allows a new, natural interpretation of the ODE model’s parameters.
Citation: Adam Bobrowski, Katarzyna Morawska. From a PDE model to an ODE model of dynamics of synaptic depression. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2313-2327. doi: 10.3934/dcdsb.2012.17.2313
References:
[1]

F. Aristizabal and M. I. Glavinovič, Simulation and parameter estimation of dynamics of synaptic depression,, Biol. Cybern., 90 (2004), 3.  doi: 10.1007/s00422-003-0432-8.  Google Scholar

[2]

A. Bielecki and P. Kalita, Model of neurotransmitter fast transport in axon terminal of presynaptic neuron,, J. Math. Biol., 56 (2008), 559.  doi: 10.1007/s00285-007-0131-5.  Google Scholar

[3]

A. Bobrowski, Degenerate convergence of semigroups,, Semigroup Forum, 49 (1994), 303.  doi: 10.1007/BF02573493.  Google Scholar

[4]

A. Bobrowski, A note on convergence of semigroups,, Ann. Polon. Math., 69 (1998), 107.   Google Scholar

[5]

A. Bobrowski, "Functional Analysis for Probability and Stochastic Processes. An Introduction,", Cambridge University Press, (2005).  doi: 10.1017/CBO9780511614583.  Google Scholar

[6]

A. Bobrowski, Degenerate convergence of semigroups related to a model of stochastic gene expression,, Semigroup Forum, 73 (2006), 345.  doi: 10.1007/s00233-006-0633-2.  Google Scholar

[7]

A. Bobrowski, On limitations and insufficiency of the Trotter-Kato theorem,, Semigroup Forum, 75 (2007), 317.  doi: 10.1007/s00233-006-0676-4.  Google Scholar

[8]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3. Spectral Theory and Applications,", With the collaboration of Michel Artola and Michel Cessenat, (1990).  doi: 10.1002/zamm.19920720316.  Google Scholar

[9]

T. Eisner, "Stability of Operators and Operator Semigroups,", Operator Theory: Advances and Applications, 209 (2010).   Google Scholar

[10]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 (2000).   Google Scholar

[11]

K.-J. Engel and R. Nagel, "A Short Course on Operator Semigroups,", Universitext, (2006).   Google Scholar

[12]

S. N. Ethier and T. G. Kurtz, "Markov Processes. Characterization and Convergence,", Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, (1986).   Google Scholar

[13]

W. J. Ewens, "Mathematical Population Genetics,", Biomathematics, 9 (1979).   Google Scholar

[14]

W. Feller, Diffusion processes in genetics,, in, (1950).   Google Scholar

[15]

W. Feller, Two singular diffusion problems,, Ann. of Math. (2), 54 (1951), 173.  doi: 10.2307/1969318.  Google Scholar

[16]

W. Feller, The parabolic differential equations and the associated semi-groups of transformations,, Ann. of Math. (2), 55 (1952), 468.  doi: 10.2307/1969644.  Google Scholar

[17]

W. Feller, Diffusion processes in one dimension,, Trans. Amer. Math. Soc., 77 (1954), 1.  doi: 10.1090/S0002-9947-1954-0063607-6.  Google Scholar

[18]

G. Greiner, Perturbing the boundary conditions of a generator,, Houston J. of Mathematics, 13 (1987), 213.   Google Scholar

[19]

K. Itô and H. P. McKean, Jr., "Diffusion Processes and their Sample Paths,", reprint of the 1974 edition, (1974).  doi: 10.1214/aoms/1177699390.  Google Scholar

[20]

I. Karatzas and S. E. Shreve, "Brownian Motion and Stochastic Calculus,", Second edition, 113 (1991).  doi: 10.1002/zamm.19890691124.  Google Scholar

[21]

P. Mandl, "Analytical Treatment of One-Dimensional Markov Processes,", Die Grundlehren der mathematischen Wissenschaften, (1968).   Google Scholar

[22]

E. Neher and R. S. Zucker, Multiple calcium-dependant process related to secretion in bovine chromaffin cells,, Neuron, 10 (1993), 2.  doi: 10.1016/0896-6273(93)90238-M.  Google Scholar

[23]

D. Revuz and M. Yor, "Continuous Martingales and Brownian Motion,", 3$^{rd}$ edition, 293 (1999).  doi: 10.1214/aop/1176989417.  Google Scholar

[24]

K. Taira, "Semigroups, Boundary Value Problems and Markov Processes,", Springer Monographs in Mathematics, (2004).   Google Scholar

[25]

A. D. Ventcel', On boundary conditions for multi-dimensional diffusion processes,, (in Russian), 4 (1959), 172.   Google Scholar

show all references

References:
[1]

F. Aristizabal and M. I. Glavinovič, Simulation and parameter estimation of dynamics of synaptic depression,, Biol. Cybern., 90 (2004), 3.  doi: 10.1007/s00422-003-0432-8.  Google Scholar

[2]

A. Bielecki and P. Kalita, Model of neurotransmitter fast transport in axon terminal of presynaptic neuron,, J. Math. Biol., 56 (2008), 559.  doi: 10.1007/s00285-007-0131-5.  Google Scholar

[3]

A. Bobrowski, Degenerate convergence of semigroups,, Semigroup Forum, 49 (1994), 303.  doi: 10.1007/BF02573493.  Google Scholar

[4]

A. Bobrowski, A note on convergence of semigroups,, Ann. Polon. Math., 69 (1998), 107.   Google Scholar

[5]

A. Bobrowski, "Functional Analysis for Probability and Stochastic Processes. An Introduction,", Cambridge University Press, (2005).  doi: 10.1017/CBO9780511614583.  Google Scholar

[6]

A. Bobrowski, Degenerate convergence of semigroups related to a model of stochastic gene expression,, Semigroup Forum, 73 (2006), 345.  doi: 10.1007/s00233-006-0633-2.  Google Scholar

[7]

A. Bobrowski, On limitations and insufficiency of the Trotter-Kato theorem,, Semigroup Forum, 75 (2007), 317.  doi: 10.1007/s00233-006-0676-4.  Google Scholar

[8]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3. Spectral Theory and Applications,", With the collaboration of Michel Artola and Michel Cessenat, (1990).  doi: 10.1002/zamm.19920720316.  Google Scholar

[9]

T. Eisner, "Stability of Operators and Operator Semigroups,", Operator Theory: Advances and Applications, 209 (2010).   Google Scholar

[10]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 (2000).   Google Scholar

[11]

K.-J. Engel and R. Nagel, "A Short Course on Operator Semigroups,", Universitext, (2006).   Google Scholar

[12]

S. N. Ethier and T. G. Kurtz, "Markov Processes. Characterization and Convergence,", Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, (1986).   Google Scholar

[13]

W. J. Ewens, "Mathematical Population Genetics,", Biomathematics, 9 (1979).   Google Scholar

[14]

W. Feller, Diffusion processes in genetics,, in, (1950).   Google Scholar

[15]

W. Feller, Two singular diffusion problems,, Ann. of Math. (2), 54 (1951), 173.  doi: 10.2307/1969318.  Google Scholar

[16]

W. Feller, The parabolic differential equations and the associated semi-groups of transformations,, Ann. of Math. (2), 55 (1952), 468.  doi: 10.2307/1969644.  Google Scholar

[17]

W. Feller, Diffusion processes in one dimension,, Trans. Amer. Math. Soc., 77 (1954), 1.  doi: 10.1090/S0002-9947-1954-0063607-6.  Google Scholar

[18]

G. Greiner, Perturbing the boundary conditions of a generator,, Houston J. of Mathematics, 13 (1987), 213.   Google Scholar

[19]

K. Itô and H. P. McKean, Jr., "Diffusion Processes and their Sample Paths,", reprint of the 1974 edition, (1974).  doi: 10.1214/aoms/1177699390.  Google Scholar

[20]

I. Karatzas and S. E. Shreve, "Brownian Motion and Stochastic Calculus,", Second edition, 113 (1991).  doi: 10.1002/zamm.19890691124.  Google Scholar

[21]

P. Mandl, "Analytical Treatment of One-Dimensional Markov Processes,", Die Grundlehren der mathematischen Wissenschaften, (1968).   Google Scholar

[22]

E. Neher and R. S. Zucker, Multiple calcium-dependant process related to secretion in bovine chromaffin cells,, Neuron, 10 (1993), 2.  doi: 10.1016/0896-6273(93)90238-M.  Google Scholar

[23]

D. Revuz and M. Yor, "Continuous Martingales and Brownian Motion,", 3$^{rd}$ edition, 293 (1999).  doi: 10.1214/aop/1176989417.  Google Scholar

[24]

K. Taira, "Semigroups, Boundary Value Problems and Markov Processes,", Springer Monographs in Mathematics, (2004).   Google Scholar

[25]

A. D. Ventcel', On boundary conditions for multi-dimensional diffusion processes,, (in Russian), 4 (1959), 172.   Google Scholar

[1]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[2]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[3]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[4]

Robert Denk, Yoshihiro Shibata. Generation of semigroups for the thermoelastic plate equation with free boundary conditions. Evolution Equations & Control Theory, 2019, 8 (2) : 301-313. doi: 10.3934/eect.2019016

[5]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[6]

Christian Lax, Sebastian Walcher. Singular perturbations and scaling. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 1-29. doi: 10.3934/dcdsb.2019170

[7]

Chérif Amrouche, Yves Raudin. Singular boundary conditions and regularity for the biharmonic problem in the half-space. Communications on Pure & Applied Analysis, 2007, 6 (4) : 957-982. doi: 10.3934/cpaa.2007.6.957

[8]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[9]

Laurence Cherfils, Stefania Gatti, Alain Miranville. Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2261-2290. doi: 10.3934/cpaa.2012.11.2261

[10]

E. C.M. Crooks, E. N. Dancer, Danielle Hilhorst. Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 39-44. doi: 10.3934/dcdsb.2007.8.39

[11]

Andreas Henrici. Symmetries of the periodic Toda lattice, with an application to normal forms and perturbations of the lattice with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2949-2977. doi: 10.3934/dcds.2015.35.2949

[12]

Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309

[13]

Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113

[14]

Aibin Zang. Kato's type theorems for the convergence of Euler-Voigt equations to Euler equations with Drichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4945-4953. doi: 10.3934/dcds.2019202

[15]

Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581

[16]

Maurizio Grasselli, Alain Miranville, Giulio Schimperna. The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 67-98. doi: 10.3934/dcds.2010.28.67

[17]

Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859

[18]

Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179

[19]

Senoussi Guesmia, Abdelmouhcene Sengouga. Some singular perturbations results for semilinear hyperbolic problems. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 567-580. doi: 10.3934/dcdss.2012.5.567

[20]

Chiara Zanini. Singular perturbations of finite dimensional gradient flows. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 657-675. doi: 10.3934/dcds.2007.18.657

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]